
Explanation in Episodic and Continuous
Decision Support Systems

Joachim Baumeister1,2 and Albrecht Striffler2
1 University of Würzburg, Institute of Computer Science, Am Hubland, 97076 Würzburg, Germany

2 denkbares GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
{firstname.lastname}@denkbares.com

Abstract

Advanced decision support systems demand for
their episodic and collaborative use in order to
solve complex problems. Further, continuous
knowledge representations help to build large
knowledge spaces. Decision support systems en-
hanced in these ways, however, require new ap-
proaches to explain the derived decisions. In this
paper, we propose an explanation approach that
is based on the standardized PROV ontology. We
discuss its applicability by giving practical exam-
ples.

1 Motivation
A new type of decision support systems is emerging in
the practical use in industry. Episodic and continuous de-
cision support systems are an advanced interpretation of
knowledge-based systems. In comparison to classical de-
cision support systems they emphasize the episodic use of
the system for finding (complex) decisions and the use of a
continuous knowledge representation for representing large
knowledge spaces.

• Episodic decision making: A (complex) decision is
not made during a single session, but the actual de-
cision process is partitioned over time into different
episodes. Each episode typically covers a different as-
pect of the decision process and often more than one
user is participating in the episodes. In consequence,
we face a (collaborative) decision process; here, a
complex decision is taken by the aggregation of a col-
lection of sub-decisions. The sub-decisions cover dif-
ferent aspects of the decision and they are derived in
different episodes and by possibly different users.

• Continuous knowledge representation: In traditional
knowledge systems a single knowledge representation
is used to build the knowledge base. More complex
and larger systems do benefit from the use of hybrid
approaches, integrating different representations into
one knowledge base. Here, for a single decision/fact
different knowledge representations can be continu-
ously interweaved. Systems then have to deal with
multiple representations during the reasoning process.

For (complex) decision support systems it is necessary
to provide helpful explanation for the derived decisions. In
the literature [Roth-Berghofer and Richter, 2008] an expla-
nation scenario is described as depicted in Figure 1.

Explainer
Explainer

Originator
User

Figure 1: A general explanation scenario.

The user demands for an explanation and interacts with
an explanation component. The component consists of the
Explainer and the Originator; in our application scenario
the originator is the decision support system, whereas the
explainer is the component of the system to generate the
explanations to the user.

Transparent explanations improve the general accep-
tance of users, but can be also used for tutorial and legal
purposes by showing the reasons for a particularly derived
decision. The commercial application of an episodic and
continuous decision support system showed the demand
for a new approach in explanation. The following require-
ments were expressed by the regular users of the system:

• The explanation has to show the temporal develop-
ment (i.e., the episodes) of a particular decision pro-
cess.

• All participating users and their competencies have to
be integrated in the explanation.

• The explanation has to handle the use of different
knowledge representations that were applied for de-
cision making.

This paper presents an extensible explanation approach
that meets the requirements stated above. Its main idea is
the interpretation of the explanation data as provenance of
the entered data and derived decisions but also the decision
process itself. As the formal model to represent provenance
data the PROV ontology is applied to implement this ap-
proach [W3C, 2013a].

The rest of the paper is organized as follows: Section 2
introduces the characteristics of episodic and continuous
decision support systems. Section 3 sketches the main
ideas of the provenance ontology PROV-O and describes
its application within the explanation of decision support
systems. Explanation queries can be interpreted as queries
to the ontology. In Section 4 typical explanation queries are
implemented as SPARQL queries to demonstrate the prin-
cipal applicability. The paper concludes with a summary of
the presented work in Section 5. Also an outlook to future
work is given.

2 Episodic and Continuous Decision
Support Systems

Before we put more detail on the explanation concept we
introduce the concepts of episodic and continuous decision
making.

Episodic Decision Making
A complex decision is made not in a "one-shot" session,
but multiple users have to contribute their expertise to find
a reasonable overall decision. Typically the decision pro-
cess can be partitioned into a number of aspects that are
covered separately. The aggregation of different aspects
contributes to an overall decision. Typically, the outcomes
of the aspects are represented as (sub-)decisions.

decision1

Aspect 1
decision1.1.1
decision1.1.2

Aspect 2
decision1.2.1
decision1.2.2
decision1.2.3

Aspect 3
decision1.3.1
decision1.3.2
decision1.3.3

Aspect 4
decision1.4.1
decision1.4.2
decision1.4.3
decision1.4.4

Figure 2: Four aspects are contributing to a final decision
decision1. Aspects 2 and 4 are responsible for the ac-
tual derivation of the decision.

In Figure 2 the aspects 1–4 for the single decision
decision1 are shown. Each aspect itself is repre-
sented by a number of questions that need to be answered,
so that a decision can be derived. In the example, as-
pect 2 and aspect 4 actually provide the derived decisions
decision1.2.1 and decision1.4.3 that support
the derivation of decision1.

Often not all aspects are covered by a single person but
every aspect is handled by a different person or expert
group. In medicine, for instance, there exists specialists for
the different organs of the human. For a complex evaluation
of the patient’s physical state, more than one specialist may
be consulted. In the technical domain, we see a similar set-
ting: In complex machinery there also exist specialists for
the different components of the machine.

Figure 3 shows an exemplary decision process, where
the different Users 1–3 are collaborating in a decision pro-
cess over the time.

Aspect 2
decision1.2.1

Aspect 4
decision1.4.3

Time

Aspect 5
decision5.1.1

2

31

Figure 3: Example decision episodes over time, where dif-
ferent aspects are covered.

The first two decisions decision1.2.1 and
decision1.4.3 are taken from the previous ex-
ample shown in Figure 2, whereas User 3 contributes

decision5.1.1 which not relevant for the final
derivation of decision1.

Use of Continuous Knowledge Representations
In complex domains it often is not possible/reasonable to
build the entire knowledge base by a single knowledge
representation. More precisely, some parts of the knowl-
edge are preferably not formalized by explicit knowledge
representations—such as rules or models. Typical reasons
for a hybrid approach are as follows:

• Uncertain domain knowledge: Parts of the domain are
not well-understood in a technical sense. Here, deci-
sions in practice are often based more on past expe-
riences, evidence, and intuition than on strict domain
laws and rules.

• Bloated domain knowledge: For some parts of the
domain, the explicit representation of the knowledge
would be too time-consuming and too complex. For
instance, much background knowledge needs to be in-
cluded, that is required for proper decision making.
Here, the expected cost-benefit ratio [Lidwell et al.,
2003, p. 56] is low, e.g., because many parts will be
rarely used in real-world decisions.

• Restless domain knowledge: Especially in technical
domains, some parts of the domain knowledge are fre-
quently changing due to technological changes. The
explicit representation of these parts would require
frequent and costly maintenance. Here, also the cost-
benefit of the maintenance vs. the utility of the knowl-
edge needs to be evaluated.

Consequently, mixing different knowledge representa-
tions with less formal elements seems to be promis-
ing. In the past, the knowledge formalization contin-
uum [Baumeister et al., 2011a] was introduced as a mental
model to represent different representations in a single sys-
tems.

As a pragmatic reasoning approach, we propose to con-
nect the different representations by a common taxonomy
of decisions. That way, the different knowledge elements
share the same decision space and thus are able to derive
the same set of decisions within one process.

▶ decision1
▶ decision2

▼ decision2.1
▼ decision2.2

▶ decision3
decision3.1

▼ decision3.2
▶ decision3.2.1
▶ decision3.2.2

Decision Taxonomy

Rule Base
IF facts1 THEN decision2.1 (P5)
IF facts2 THEN decision2.2 (N1)
IF facts3 THEN decision2.1 (P3)
IF facts4 THEN decision2.2 (N5)
....

Module for
decision2.x

Workflow Models

Module for
decision1.xAd-hoc decisions with

informal justifications

Literature L1 says for
substance X that for

decision3.1...

Decision Memo

Figure 4: Connecting different knowledge elements by the
use of a common decision taxonomy.

In Figure 4, rules, workflow models, and informal de-
cision memos are connected by a taxonomy of decisions.

The combined knowledge base is able to derive the same
set of decisions albeit the representations used in reason-
ing are differing. In literature, formal approaches such as
RIF [W3C, 2013b] apply a comparable connection, i.e., de-
cisions are formalized as concepts/instances and rules are
defined to derive the existence of the concept/instance.

In a more elaborated approach, the knowledge elements
are able to derive decisions in a weighted manner. Here,
we propose a score-based approach. Scores have been reg-
ularly used as a weighting scheme in knowledge engineer-
ing [Puppe, 1998; Miller et al., 1982]. By using scores
each knowledge element is not only able to derive a solu-
tion categorically, but can attach a score weight to a de-
cision. Every decision provides an account that stores the
scoring weights given to the decision during the reasoning
process. If a knowledge element "fires", then the corre-
sponding score weight is added to the account of the par-
ticular decision. All scoring weights of a single decision
are aggregated to a final weight. If the final weight exceeds
a predefined threshold, then the decision element is estab-
lished.

Example: We define a universal set of score weights S =
{N1, N2, N3, 0, P1, P2, P3}, where P1,. . . ,P3 are positive
score weights and N1,. . . ,N3 are negative score weights.
The sum of two equal categories results in the next higher
category (e.g. P2 + P2 = P3). A negative and the corre-
sponding positive score weight nullify each other (e.g., N2
+ P2 = 0). A decision is established (confirmed), if the ag-
gregation of the collected scoring weights exceeds the score
weight P3. In Figure 5, we see that a rule fired a score
weight P1 to decision1. The decision decision2
and decision5 are established, since the aggregation of
their score weights exceeds the threshold P3. The decision
decision4 is not established, since a negative weight N3
nullified the positive weight P3.

P2

P1

decision1

P2

P2

P1

decision2

P2

decision3

P3

P1

P1

decision5

P3

decision4

N3

Rule Base

IF facts1 THEN decision1 (P1)
IF facts2 THEN decision1 (P2)
IF facts3 THEN decision4 (P3)
IF facts4 THEN decision3 (N2)
....

Decision Accounts

Figure 5: Score accounts of five decisions, and a rule firing
a new score weight to the account of decision1.

The same decision accounts are also filled by other
used knowledge types. For instance, the score weight of
an entered decision memo contributes to the account of
decision1. Further, a traversed workflow model can de-
rive a score weight for decision2, which is also added
to the decision account.

In this section we described the internal representation
of a continuous knowledge representation by the common
use of a decision taxonomy. In the following section we
introduce an approach to provide explanation capabilities
for such a kind of systems.

3 Provenance and Explanation in Decision
Support Systems

As motivated above, the process of making a complex
decision often involves a number of people contributing
to the decision process. Furthermore, the process itself
is taking place over a longer period of time. For these
reasons, it is very important that the derived decisions
are understandable and transparent for all users. These
requirements imply the versioning and documentation of
decisions and data entries. Changes need to be trace-
able, as for instance described by [Noy and Musen, 2002;
Franconi et al., 2010]. Further also a means of representing
the decision process itself is required to be used in an ex-
planation component. Such a component needs to answer
(at least) the following questions:

• At which time a particular data was entered and who
entered that data?

• Which knowledge elements are responsible for a par-
ticular decision?

• What is the history of a particular data and decision?

• Which persons contributed to the process of a partic-
ular decision?

We propose the application of the PROV ontology to
knowledge elements and the entities of the decision pro-
cess. The PROV ontology explicitly represents the prove-
nance of entities, i.e., in our case decisions, entered data,
etc. are interpreted as PROV entities. We first give a brief
overview of PROV-O and then show its application to de-
cision processes.

3.1 The PROV Ontology in a Nutshell

The PROV ontology [W3C, 2013a] distinguishes three lev-
els of terms defined in the ontology:

1. Starting Point Terms to be used to express the basic
knowledge about provenance of data.

2. Expanded Terms for more expressive definitions of re-
lationships in provenance.

3. Qualified Terms integrating the Qualification Pat-
tern [Dodds and Davis, 2012] into the PROV ontology
for a very expressive representation of the provenance
of data.

In this section we select a helpful subset of "starting
points" and "expanded terms" and describe the concepts
and relations, that are useful to represent the provenance
of decision support systems. In Figure 6 these concepts
and relations are depicted.

prov:Activity

prov:Entity

prov:Agent

wasAttributedTo

wasGeneratedByused

wasAssociatedWith

xsd:dateTime xsd:dateTime

endedAtTimestartedAtTime

xsd:dateTime
xsd:dateTime

generatedAtTime
invalidatedAtTime

wasRevisionOf
specializationOf
wasDerivedFrom
hadPrimarySource

value

Figure 6: Selected elements of the PROV ontology.

For concepts defined in the PROV ontology the pre-
fix prov is used. The three classes prov:Agent,
prov:Activity, and prov:Entity are central for
describing provenance information. An prov:Agent
is executing an prov:Activity and produces an
prov:Entity. Consequently, an prov:Entity can
be attributed to an prov:Agent and the prov:Entity
was generated by a specific prov:Activity.
An prov:Activity is also associated with an
prov:Agent. In some processes an prov:Activity
uses an prov:Entity for the creation of another
prov:Entity. An prov:Activity has a start
and an end time; this is related to the generation time
of an prov:Entity. When the prov:Entity is
superseded by a revision (prov:wasRevisionOf),
then the prov:Entity is invalidated at a specified time. The
following properties are also of interest: The property
prov:wasDerivedFrom states that an instance of
prov:Entity was transformed into another instance.
In decision support systems, the primary source of a
specific prov:Entity is also of interest (see property
prov:hadPrimarySource).

In its basic setting we see that the PROV ontology is a
suitable starting point for general explanation capabilities
in decision support systems. In the following we describe
the specific extensions for such systems together with ap-
plication scenarios.

3.2 The PROV Ontology for Decision Support
Systems

When integrating the PROV ontology into decision support
systems, we consider a process-centered provenance. Here,
actions and steps are represented that are used for produc-
ing a particular decision.

For the application of the PROV ontology in decision
support systems we introduce a number of new concepts
sub-classing the known core concepts of PROV. In Figure 7
the most important subclasses are depicted; the prefix dss
is used for classes introduced for decision support.

At the top of the figure the subclasses of prov:Entity

are shown: A simple entity can be a decision
(dss:Decision) or entered data (dss:FormValue
and dss:DecisionMemo). Every decision is associ-
ated with a dss:DecisionAccount instance, which
stores the score weights using dss:ScoreWeight in-
stances. The decision account itself is a complex entity,
i.e., a prov:Collection.

The extension of the concept prov:Activity
knows two sub-classes: 1) for entering data in memos
(dss:MemoEntry) and for answering question in forms
(dss:FormEntry); 2) for the actual derivation of a de-
cision. The latter activity is central for the explanation of
different decisions derived during a process.

Two different prov:Agent sub-classes are introduced:
dss:TeamMember to represent users participating in
the collaborative decision process and dss:Domain-
Specialist for building the explicit knowledge base
and for giving expert decisions. Further dss:DSS repre-
sents the actual decision support system.

In a concrete scenario instances of the classes are created
storing the provenance information of the decision making
process. We demonstrate the concrete use by an example,
where instances of the example use the prefix ex.

A taxonomy of decisions is typically formalized by nar-
rower/broader relations of the SKOS [W3C, 2009] ontol-
ogy.

ex:decision1 rdf:type dss:Decision;
skos:narrower ex:decision1.1;
skos:narrower ex:decision1.2;
skos:narrower ex:decision1.3.

ex:decision2 rdf:type dss:Decision;
skos:narrower ex:decision2.1;
skos:narrower ex:decision2.1.

In the example, the decisions ex:decision1 and
ex:decision2 are defined together with more specific
sub-decisions. A particular decision can be inferred in dif-
ferent ways: 1) The use of explicit inference knowledge
used by a decision support system. 2) The creation of a de-
cision memo by a user. We examine both alternatives in the
following.

Explicit Inference of Decisions
The explicit reference and the ontological representation,
respectively, is exemplified by the activity of a firing rule.
The instances are graphically depicted in Figure 7-(4).

The user ex:teamMemberMM enters a
ex:formValue1 entity during the activity ex:form-
Entry1. The entity ex:formValue1 is responsible for
deriving a specific score weight ex:scoreWeight1.
The derivation of the score weight is represented by
an instance of dss:DecisionDerivation, i.e.,
ex:decisionDerivation1, which itself uses a rule
included in the rule base ex:ruleBase1 The activity
ex:decisionDerivation1 added the score weight
to the defined score account ex:decisionAccount1,
which itself is linked to the corresponding decision
ex:decision1.

Inference by Decision Memos
The reasoning and representation of decisions taken by
decision memos is very similar to the approach de-
scribed above for rules. Actually, only the instances of
dss:DecisionDerivation and dss:Data are con-
nected differently to the score weight of the decision. In
Figure 7-(4) a dotted box is depicted at the right. The box

prov:generatedAtTime

ex:formEntry1

ex:scoreWeight1

ex:teamMemberMM

prov:wasAssociatedWith

prov:used

ex:decisionRule1

Weight:P3 prov:value

prov:wasGeneratedBy

prov:wasDerivedFrom

date3

date1date2

prov:endedAtTime

prov:wasAttributedTo

ex:decision-
Derivation1

prov:wasGeneratedBy

ex:decision1

ex:decision-
Account1

dss:hasAccount

ex:ruleBase1

prov:wasAttributedTo

ex:decision-
Derivation2

ex:memoBase1

prov:used

ex:decisionMemo1

prov:wasAttributedTo

ex:formValue1

prov:startedAtTime

dss:contains

prov:wasGeneratedBy

prov:wasDerivedFrom

prov:Person prov:SoftwareAgent

dss:DomainSpecialist

dss:DSS

prov:Entity

dss:TeamMember

dss:Decisiondss:Data

prov:Activity

dss:Decision-
Derivation

dss:DataEntry

dss:DecisionMemo dss:FormValue dss:MemoEntry dss:FormEntry

prov:Collection

dss:Decision-
Account

dss:ScoreWeight

dss:hasAccount

dss:contains

43

1 2

prov:Agent

Figure 7: (1) Subclasses and relations prov:Entity; (2) Specific subclasses of prov:Activity and (3) specific
subclasses of prov:Agent; (4) Instances and relations created when a decision rules fires for a concrete decision
ex:decision1. The dotted boxes show the alternative use case, where a decision memo is responsible for deriving
the decision.

shows the alternative instances when entering a decision
memo.

The user ex:teamMemberMM enters the deci-
sion memo ex:decisionMemo1 during the activity
ex:memoEntry1. In the decision memo the user
also enters a score weight for ex:decision1.
Consequently, the decision memo derives the
ex:scoreWeight1 that was generated by the in-
stance ex:decisionDerivation2. This instance is
connected with the actual ex:decisionMemo1 stored
in the data base for memos (ex:memoBase1).

4 Querying for Explanation
By using an ontology representation of the decision pro-
cess, the justification of a particular decision can sim-
ply be queried. Moreover, ad-hoc explanations can eas-
ily be constructed by new queries. When representing
the ontology as RDF triples, the standard query language
SPARQL [W3C, 2013c] can be used. Of course, an intu-
itive visualization of the query results needs to be defined,
but this is typically up to the application front-end of the
decision support system.

In the following, we exemplify the explanation capa-
bilities of the presented PROV extension by defining the
SPARQL queries for the questions posed at the beginning
of Section 3. It is worth noticing that the definition of
SPARQL queries is up to the administrators of the system.
For end-users the results of these queries should be pre-
sented in a user-friedly manner.

For demonstration purposes we implemented an ex-
tended version of the example depicted in Figure 7 in the
knowledge modelling environment KnowWE [Baumeister
et al., 2011b; 2012].

At which time was a particular data entered and who
entered the data?
The following SPARQL query lists all entries and the per-
sons involved in creating a corresponding entry. Addition-
ally the generation time of the entry is shown.

SELECT ?entry ?person ?time
WHERE {

?entry
prov:wasGeneratedBy ?activity.

?activity
prov:wasAssociatedWith ?person.

?entry
prov:generatedAtTime ?time.

}

Figure 8 shows the results of the SPARQL query above:
The three entities decisionMemo2, formValue1, and
formValue3 are listed with their creators and creation
date.

Figure 8: Entities and persons involved in the creation of
the entities.

The query can be further constrained to a specific data
entry. Then this query is similar to the last query of this
section.

Which knowledge elements are responsible for a
particular decision?
The following SPARQL query inspects the connected
nodes of the decision instance ex:decision1 in order
to check for derived values. The FILTER NOT EXISTS
extension guarantees that only valid entities are shown.

SELECT ?givenValue ?byKnowledge
WHERE {
ex:decision1

dss:hasAccount ?account.
?account

dss:contains ?weights.
?weights

prov:value ?givenValue.
?weights

prov:wasGeneratedBy ?activity.
?activity

prov:used ?byKnowledge.

FILTER NOT EXISTS {
?weights
prov:invalidatedAtTime
?invalidated. }

}

Figure 9 shows the results of the SPARQL query above:
Derived values are shown together with the knowledge
elements—decision memos and rules–that are responsible
for the existence of the values.

Figure 9: Valid values derived together with the acting
knowledge element.

What is the history of a particular data and decision
(including involved persons)?
For a given decision ex:decision1 the following
SPARQL query identifies all values that were given to that
decision. For each value, also the used knowledge element
and the acting person is retrieved. Also the validity of the
value is printed; values with empty invalidated column are
currently valid.

Figure 10 shows the results of the query: We see that
ex:decision1 retrieved three values, whereas value P2
is already invalidated.

Figure 10: History of values for the given decision
ex:decision1.

SELECT ?value ?usingKnowledge ?byPerson
?generated ?invalidated

WHERE {
ex:decision1

dss:hasAccount ?account.
?account

dss:contains ?data.
?data

prov:value ?value.
?data

prov:wasDerivedFrom ?entity.
?data

prov:wasGeneratedBy ?activity.
?activity

prov:used ?usingKnowledge.
?entity

prov:wasAttributedTo ?byPerson.
?entity

prov:generatedAtTime
?generated.

OPTIONAL {
?data prov:invalidatedAtTime
?invalidated. }

}

5 Conclusions

We conclude the paper with a brief discussion and an out-
look to the future work.

5.1 Discussion

Advanced decision support systems allow for the dis-
tributed and episodic handling of complex decision prob-
lems. They handle large knowledge spaces by mixing dif-
ferent knowledge representations with informal decision
justifications. When implemented in a distributed setting,
the transparent justification of derived decisions is of prime
importance. In this paper we introduced an explanation
approach of continuous knowledge representations that is
based on the PROV ontology. We described how an ontol-
ogy representation of the decision process and the derived
decisions can be used to generate transparent explanations.

In the literature the related ontology models can be
found: [Evangelou et al., 2005] describe an ontology to
support collaborative decision-making. They propose the
model KAD (Knowledge-Argument-Decision) to facilitate
exchange between decision makers and their argumenta-
tion. The KAD ontology model defines the three main
classes discussionParticipant, coreEntity,
and coreProcess, where their semantics is related or
can be aligned to the starting point terms of the PROV on-
tology. Here, more focus is set on supporting the argu-
mentation and discussion between decision makers. [Ko-
rnyshova and Deneckère, 2010] also propose an ontol-
ogy for decision making. The decision making ontology
(DMO) tries to support IS engineers in their decision mak-
ing during an information systems project. The proposed
ontology is evaluated by instantiating it to a requirements
engineering process. The ontology is very elaborated and
could be connected with the PROV ontology. For our pur-
poses (continuous knowledge representation and episodic
use) the extensions described in Figure 7 (1) need to be
also made.

5.2 Future Work
At the current state, explanations are based on SPARQL
queries. Albeit a very general approach, the construction
of such queries can be cumbersome for standard users.
For this reason we aim to define a simplified language
to define explanation queries quickly in an intuitive man-
ner. In Section 4 we demonstrated the access to typ-
ical explanation queries by SPARQL expressions. Al-
though the shown results include all relevant information
needed for an explanation, the presentation is likely to be
not very intuitive. Therefore we are planning to investi-
gate ontology visualization approaches [Fluit et al., 2002;
Katifori et al., 2007] to render the results of the explanation
query in a more user-friendly manner.

As the next practical step we are planning to implement
and evaluate the proposed ontology and explanation ca-
pabilities for a decision support system, that is already in
use. The KnowSEC system supports the decision work for
chemical safety within a unit of the Federal Environment
Agency in Germany (Umweltbundesamt). At the current
state, the systems manages more than 42.000 sub-decisions
for more than 11.000 chemical substances; many of the de-
cisions were automatically derived. We refer to [Baumeis-
ter et al., 2013] for more details.

References
[Baumeister et al., 2011a] Joachim Baumeister, Jochen

Reutelshoefer, and Frank Puppe. Engineering intelligent
systems on the knowledge formalization continuum. In-
ternational Journal of Applied Mathematics and Com-
puter Science (AMCS), 21(1), 2011.

[Baumeister et al., 2011b] Joachim Baumeister, Jochen
Reutelshoefer, and Frank Puppe. KnowWE: A semantic
wiki for knowledge engineering. Applied Intelligence,
35(3):323–344, 2011.

[Baumeister et al., 2012] Joachim Baumeister, Jochen
Reutelshoefer, Volker Belli, Albrecht Striffler, Rein-
hard Hatko, and Markus Friedrich. KnowWE - a
wiki for knowledge base development. In The 8th
Workshop on Knowledge Engineering and Software
Engineering (KESE2012), http://ceur-ws.org/Vol-
949/kese8-05_04.pdf, 2012.

[Baumeister et al., 2013] Joachim Baumeister, Albrecht
Striffler, Marc Brandt, and Michael Neumann. Towards
continuous knowledge representations in episodic and
collaborative decision making. In The 9th Workshop
on Knowledge Engineering and Software Engineering
(KESE2013), 2013.

[Dodds and Davis, 2012] Leigh Dodds and Ian Davis.
Linked Data Patterns Linked Data Patterns Linked Data
Pattern. http://patterns.dataincubator.org/book, 2012.

[Evangelou et al., 2005] Christina Evangelou, Nikos
Karacapilidis, and Omar Abou Khaled. Interweaving
knowledge management, argumentation and decision
making in a collaborative setting: the kad ontology
model. International Journal of Knowledge and
Learning, 1(1):130 – 145, 2005.

[Fluit et al., 2002] Christiaan Fluit, Marta Sabou, and
Frank van Harmelen. Supporting User Tasks through
Visualisation of Light-weight Ontologies. In Handbook
on Ontologies in Information Systems, pages 415–432.
Springer, Berlin, 2002.

[Franconi et al., 2010] E Franconi, T Meyer, and I. Varz-
inczak. Semantic diff as the basis for knowledge base
versioning. In 13th International Workshop on Non-
Monotonic Reasoning (NMR), pages 7–14, 2010.

[Katifori et al., 2007] Akrivi Katifori, Constantin Halatsis,
George Lepouras, Costas Vassilakis, and Eugenia Gi-
annopoulou. Ontology visualization methods - a survey.
ACM Comput. Surv., 39(4), November 2007.

[Kornyshova and Deneckère, 2010] Elena Kornyshova
and Rébecca Deneckère. Decision-making ontology
for information system engineering. In Jeffrey Parsons,
Motoshi Saeki, Peretz Shoval, Carson C. Woo, and Yair
Wand, editors, ER, volume 6412 of Lecture Notes in
Computer Science, pages 104–117. Springer, 2010.

[Lidwell et al., 2003] William Lidwell, Kritina Holden,
and Jill Butler. Universal Principles of Design. Rock-
port Publishers, October 2003.

[Miller et al., 1982] Randolph A. Miller, Harry E. Pople,
and J. Myers. INTERNIST-1, an Experimental
Computer-Based Diagnostic Consultant for General In-
ternal Medicine. New England Journal of Medicine,
307:468–476, 1982.

[Noy and Musen, 2002] Natalya F. Noy and Mark A.
Musen. PromptDiff: a fixed-point algorithm for compar-
ing ontology versions. In In 18th National Conference
On Artificial Intelligence (AAAI-2002, pages 744–750,
2002.

[Puppe, 1998] Frank Puppe. Knowledge Reuse among
Diagnostic Problem-Solving Methods in the Shell-Kit
D3. International Journal of Human-Computer Studies,
49:627–649, 1998.

[Roth-Berghofer and Richter, 2008] Thomas R. Roth-
Berghofer and Michael M. Richter. On explanation.
Künstliche Intelligenz, 22(2):5–7, May 2008.

[W3C, 2009] W3C. SKOS Simple Knowledge Orga-
nization System reference: http://www.w3.org/tr/skos-
reference, August 2009.

[W3C, 2013a] W3C. PROV-O: The PROV Ontology:
http://www.w3.org/tr/prov-o/, April 2013.

[W3C, 2013b] W3C. RIF-Core Recommendation:
http://www.w3.org/tr/rif-core/, February 2013.

[W3C, 2013c] W3C. SPARQL 1.1 recommendation:
http://www.w3.org/tr/sparql11-query/, March 2013.

