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Abstract
In this position paper, we provide first insights
into possible schemes to utilize rule learning al-
gorithms to solve the task of multilabel classifi-
cation. The main idea is to exploit specific prop-
erties of symbolic rule representations to build
models that consist of high-quality multilabel
rules. To this end, novel ideas which rely on the
adaptation of conventional inductive rule learners
to multilabel data are presented. Their expected
advantages and disadvantages, opportunities and
limitations are reviewed and discussed.

1 Introduction
Rule learning has a very long history and is a well-known
problem in the machine learning community. Over the
years many different algorithms to learn a set of rules were
introduced. The main advantage of rule-based classifiers
are interpretable models as rules can be easily compre-
hended by humans. Also, the structure of a rule offers the
calculation of overlapping of rules, more specific, and more
general relations. Thus, the rule set can be easily modified
as opposed to most statistical models such as SVMs or neu-
ral networks. However, most rule learning algorithms are
prone to multi-class classification.

On the other hand, many problems involve assigning
more than one single class to an object. These so-called
multilabel problems can be often found when text is classi-
fied into topics or tagged with keywords, but there are also
many examples from other media such as the recognition
of music instruments or emotions in audio recordings or
the classification of scenes in images and from the domain
of biology and gene function classification.

It is widely accepted that one major issue in learning
from multilabel data is the exploitation of label dependen-
cies. Learning approaches may greatly benefit from consid-
ering label correlations, and we believe that rule induction
algorithms provide a good base for this. Firstly, label de-
pendencies can directly be modeled and expressed in form
of rules. Secondly, such rules are directly interpretable and
comprehensible for humans. Even if complex and long
rules are generated, the implication between classes can be
estimated more easily than with other approaches by focus-
ing on the part of the rules considering the classes.

In this paper, we present current work in progress and
perspectives towards multilabel rule learning. Relatively
little work exist regarding rule learners taking into account
the popularity of multilabel classification. An overview of
related work shows the current possibilities and limitations

of such approaches. The challenges in rule induction and
multilabel learning are reviewed and two general directions
are proposed and discussed.

2 Related Work
Many rule-based approaches to multilabel learning rely on
association rules. This is an obvious choice as this kind
of rules is capable of having more than one condition in
the head of the rule. However, as the goal of all classifi-
cation algorithms is to assign classes to examples, usually
Classification Association Rules (CARs) are used, instead
of regular association rules that are induced in an unsuper-
vised fashion. Often, these single-label association rules
are introduced as a first step and then are combined to yield
multilabel association rules or are used to directly predict
the labels of a given test instance. The latter works by using
all single-label association rules that cover the example and
predict all labels that are in the head of these rules. How-
ever, in this case, the model does not consist of multilabel
association rules.

The literature shows only a few approaches to multilabel
rule learning. Most of them utilize association rule learn-
ing to induce the set of rules. As mentioned above, often
the capability of the algorithms to handle multilabel data
does not stem from the representation of the model (i.e., by
using multilabel rules) but is reached by employing certain
classification schemes. The approach of Arunadevi and Ra-
jamani (2011) operates on spatial data. Single-label asso-
ciation rules are learned by using a multi-objective genetic
algorithm. Then, the rules are sorted by a weighted combi-
nation of support, confidence and J-measure, and the final
classifiers is produced according to this ranking.

In the same manner as Arunadevi and Rajamani (2011),
Ávila et al. (2010) use a genetic algorithm to induce the
single-label association rules. However, they use a deci-
sion list for classification of single labels. The multilabel
prediction is also built by using a combination of all cov-
ering rules of the different rule sets. They also account for
a good distribution of the labels by using a token-based re-
calculation of the fitness values of each rule.

Li et al. (2008) also learn single-label association rules
and the test data is labeled by setting exactly those la-
bels that have a probability greater than 0.5 in the covering
rules.

Another method that can be applied to tackle multilabel
data are the so-called multilabel alternating decision trees
(De Comité et al., 2003). The idea is to adapt boosting
techniques to multilabel classification. As a result, the al-
gorithm yields rules that have only one decision (similar
to decision stumps) and that predict confidence values for



each label.
A different idea is to change the model representation to

make it suitable for multilabel data. Consequently, the rule
representation has to be generalized to multilabel, i.e., a
label vector instead of a single value in the head of the rules.
In the work of Allamanis et al. (2013), such a generalized
rule format is introduced. Interestingly, the proposed rules
also allow for postponing the classification by offering a
“don’t care”-value. As there may be cases where the rule
is not confident enough or simply when no rule covers the
example such a value may be beneficial. In this work, a
Michigan-style Learning Classifier System (LCS) is used
in combination with a genetic algorithm. The classification
is done by using a weighted voting scheme (the fitness of
the rules is used as weight) as many multilabel rules may
cover the example.

Another algorithm that also finds multilabel rules is
MMAC (Thabtah et al., 2004). The idea here is to use a
multi-class, multilabel associative classification approach
by not only generating from all frequent itemsets the rules
that pass the confidence threshold but also include the sec-
ond best rules and so on. These single-label association
rules then are merged to create multilabel rules. The algo-
rithm proceeds by deriving the frequent itemsets, generat-
ing the association rules, removing the covered instances,
and repeat these steps on the remaining instances. Hence,
rules that have the same conditions in the body then can be
merged by using their single-label classes in the multilabel
vector in the head of the rule. In this manner it is possible
to create a total ranking of all labels for each test instance.

Another associate multilabel rule learner with several
possible labels in the head of the rules was developed by
Thabtah et al. (2006). These labels are found in the whole
training set, while the multilabel lazy associative approach
of Veloso et al. (2007) generates the rules from the neigh-
borhood of a test instance during prediction. The advantage
then is that fewer training instances are used to compute
the coverage statistics which is beneficial when small dis-
juncts are a problem as they are often predicted wrong due
to whole training set statistics. Another important aspect
mentioned in this work is that essentially one assumes de-
pendencies between the labels. Otherwise, multilabel data
can be simply solved by decomposing it into single-label
datasets by using schemes such as binary relevance. Sur-
prisingly, Veloso et al. (2007) was the only work that men-
tioned this problem. Their solution is simple as they use
the prediction of a first iteration as additional attribute in
the dataset for a second iteration. This lasts as long as la-
bels remain unused in the attribute section of the dataset.

In summary, most of the relevant work is based on clas-
sification association rules (CARs). Often, evolutionary al-
gorithms are used to derive a high-quality rule set. Label
dependencies are not tackled explicitly though they might
be taken into account by algorithm-specific properties.

3 Multilabel Classification
Multilabel classification refers to the task of learning a
function that maps instances x = (x1, . . . , xm) ∈ X to
label subsets or label vectors y = (y1, . . . , yn) ⊂ {0, 1}n,
where L = {λ1, . . . , λn}, n = |L| is a finite set of prede-
fined labels and where each label attribute yi corresponds
to the absence (0) or presence (1) of label λi . Thus, in con-
trast to multiclass learning, alternatives are not assumed to
be mutually exclusive, such that multiple labels may be as-
sociated with a single instance.

Potentially, there are 2n different allowed allocations of
y, which is a dramatic growth compared to the n possible
states in the multiclass setting. This, and especially the
resulting correlations and dependencies between the labels
in L, make the multilabel setting particularly challenging
and interesting compared to the classical field of binary and
multiclass classification.

From a probabilistic point of view, one of the main dif-
ferences between multilabel and binary or multiclass clas-
sification are the possible dependencies in the label output
space. In binary and multiclass problems the only observ-
able probabilistic dependence is between the input vari-
ables, i.e. the attributes xj , and the label variables yi. A
learning algorithm tries to learn exactly this dependence in
form of a classifier function h. In fact, if a classifier pro-
vides a score or confidence for its prediction ŷ, this is often
regarded as an approximation of P (y = ŷ

∣∣ x), i.e. the
probability that ŷ is true given a document x.

As mentioned above, we may additionally observe de-
pendencies between labels in multilabel classification. I.e.
we may observe that the occurrence or absence of single la-
bels under certain circumstances correlate with each other.
From the early beginning of multilabel classification, there
have been attempts to exploit these types of label corre-
lations (cf. e.g. McCallum, 1999; Ghamrawi and McCal-
lum, 2005; Zhu et al., 2005). A middle way is followed
by Read et al. (2009) and Dembczyński et al. (2010a) and
their (probabilistic) classifier chains by stacking the under-
lying binary relevance classifiers with the predictions of
the previous ones. However, only recently Dembczyński
et al. (2010b) provided a clarification and formalization of
label dependence in multilabel classifications. Following
their argumentation, one must distinguish between uncon-
ditional and conditional label dependence. Roughly speak-
ing, unconditional dependence or independence of labels
does not depend on a specific given input instance (the con-
dition) while conditional dependence does. An example
may illustrate this.

Suppose a label space indicating topics from news arti-
cles, and suppose further that λu is the topic politics and
λv corresponds to foreign affairs. Especially if the top-
ics are organized in a hierarchy and λv is a sub-topic of
λu, there will obviously be a dependency between both
labels. We will hence observe yu with a different proba-
bility P (yu = 1) < 1 as if yv was also observed, since
then it holds P (yu = 1|yv = 1) = 1. The probability
P (yv = 1|yu = 1) of seeing an article about foreign af-
fairs on a page in the politics section will in turn be also
much higher than by just randomly opening the newspa-
per, which corresponds to P (yv = 1). These probabilities
are unconditional since they do not depend on a particular
document. Suppose now that a news article is about the
Euro crisis. The conditional probabilities P (λu = 1|x),
P (λv = 1|x) and P (yv = 1|yu = 1,x) would likely in-
crease and hence be different from the unconditional ones.
However, if an article was about the cardiovascular prob-
lems of Ötzi, we would observe that both labels are condi-
tionally independent, since (very likely) P (yu = a|yv =
b,x) = P (yu|x) = 1 − a for all a, b ∈ {0, 1} and inter-
changed u and v.

4 Inductive Rule Learning
Inductive rule learning is researched very well. Over the
years the community has introduced a bunch of algorithms
that are still in use (cf., Ripper (Cohen, 1995) as one of the



popular examples). However, most multilabel rule learning
algorithms rely on association rule mining (cf., Section 2),
the combination of inductive rule learners and multilabel
data is yet to be evaluated.

A rule learning algorithm has a set of rules as result.
These rules are of the form

body → head

where the body consists of a number of conditions
(attribute-value tests) and, in the regular case, the head has
only one single condition of the form yi = 0 or 1. However,
multilabel rules may have several of such conditions.

Most inductive rule learning algorithms for classifi-
cation employ a separate-and-conquer (SeCo) strategy
(Fürnkranz, 1999). Its basic idea is to find a rule that cov-
ers a part of the example space that is not explained by any
learned rule yet (the conquer step). The possible candidates
are evaluated according to a quality function (heuristic) de-
fined on statistics of covered positive and negative exam-
ples. After such a rule is found, it is added to the current
set of rules, and all examples that are covered by this rule
are removed from the data set (the separate step). Then,
the next rule is searched on the remaining examples. This
procedure is repeated until no more (positive) examples are
left. In order to prevent overfitting, the two constraints that
all examples have to be covered (completeness) and that
no negative example has to be covered in the binary case
(consistency) can be relaxed so that some positive exam-
ples may remain uncovered and/or some negative examples
may be covered by the set of rules.

Obviously, there are some shortcomings when the SeCo
strategy should be employed on multilabel data. First of all,
there is no direct and intuitive notion of positive and nega-
tive examples (cf. also Section 5) This affects the computa-
tion of the heuristics for selecting the candidate conditions.

Secondly, a SeCo algorithm is usually learned in order
to subsequently cover the examples of each possible class
(ordered one-against-all). This is obviously not longer pos-
sible in the multilabel setting, since an example may be-
long to different classes. Hence different decomposition
approaches and stopping criterions have to applied in the
multilabel settings.

5 Multilabel Rule Learning
The predominant approach in multilabel classification is bi-
nary relevance learning Tsoumakas and Katakis (cf. e.g.
2007). It tackles a multilabel problem by learning one clas-
sifier for each class, using all objects of this class as pos-
itive examples and all other objects as negative examples.
There exists hence a strong connection to concept learning,
which is dedicated to infer a model or description of a target
concept from specific examples of it (see e.g. Domingos,
1997, Sec. 2.2). When several target concepts are possible
or given for the same set of instances, we formally have a
multilabel problem.

The problem of this approach is that each label is con-
sidered independently of each other, and as we have seen
by the example given before, this can lead to loss of useful
information for classification. This problem is commonly
shared by all approaches mentioned in Section 2 which can
contain only one condition, i.e. one label in the head of a
rule.

5.1 Labelsets Approach
A rule induction approach which may consider several con-
ditions in the head seem hence more appropriate for the

multilabel setting. A possible simple solution is to use
the label powerset transformation (Tsoumakas and Katakis,
2007), which decomposes the initial problem into a mul-
ticlass problem with {Px

∣∣ x ∈ training set} ⊆ 2L} as
possible classes. This problem can then be processed with
common rule induction algorithms, which will thus pro-
duce rules with several labels in the head.

In general, we can state that this approach is able to con-
sider conditional dependency between labels of high order
when using a separate and conquer approach, since rules
are learned locally on subsets of the instances. However,
an obvious disadvantage is that we only can only predict
label relations and combinations which were seen in the
training data. Hence, no new relationships can be discov-
ered, and we may miss the correct labelsets in unknown test
data.

We propose to modify the SeCo iteration as explained in
the following: Firstly, we learn so-called multiclass deci-
sion lists, which allows to use different heads in the rules of
the the decision list. If we limit ourselves to labelsets seen
in the training data, this corresponds to using label pow-
erset transformation with a multiclass decision list learner,
with the mentioned shortcomings. In addition, the eval-
uation for each possible labelset can be very expensive
(O(min(2n,m)) in contrast toO(n)). Hence, we propose a
greedy approach. It starts by evaluating the current added
condition with respect to all labels independently in order
to determine the best covered label. If we add an addi-
tional label to our head, we can only stay the same or get
worse, since the number of covered examples remain the
same and the number of covered positives, for which the
head applies, can not increase. Hence, we can safely prune
great part of the label combinations as soon as the heuristic
becomes worse.

Several aspects of this approach have to be analyzed.
Firstly, it is not clear whether the greedy refinement step
leads to mostly single label heads. Secondly, an interest-
ing issue is the effect of allowing negative predictions, i.e.
heads of the type yi = 0. This is somehow contrary to
the notion of concept learning, where we are interested in
finding convenient representations of the concept, but it is
in line with the label symmetry assumption of binary rele-
vance and many other multilabel approaches. And thirdly,
it has to be analyzed if this approach is indeed effective
in predicting labelsets which could not be observed in the
training set.

5.2 Chaining and Bootstrapping
An effective approach for exploiting conditional label
dependencies showed to be classifier chains (Read et
al., 2009). Classifier chains (CC) make use of stack-
ing the previous binary relevance predictions in or-
der to implement the chain rule in probability theory
P (y1, . . . , yn) = P (yn

∣∣ y1, . . . , yn−1), since they learn
the binary classifiers hi with training examples of the form
(x1, . . . , y1, . . . , yi−1) (Dembczyński et al., 2010a). One
drawback of CC is the predetermined, fixed order of the
classifiers (and hence the labels) in the chain, which makes
it impossible to learn dependencies in the contrary direc-
tion.

Thus, we propose to use a bootstrapping approach in or-
der to benefit from the chaining rule effect but also in order
to overcome the main disadvantage of CC, the fixed order.
As we will see, our version of bootstrapping is particularly
adequate for rule induction.



Like in binary relevance, we learn one theory for
each label, but we expand our training instances by
the label information of the other labels, i.e. the
training examples vectors for learning label yi is
(x1, . . . , y1, . . . , yi−1, yi+1, . . . , yn). Hence, we obtain
theories with label attributes in the body, like in CC. The
prediction for a test instance begins with empty label at-
tributes, which means that they are set to unknown. Here
we benefit from the natural support for such attribute states
(missing, don’t care, etc.) of symbolic approaches. Hence,
in the first iteration, only rules apply which do not include
any label attribute in the body. These rules were generated
during the training process because there was enough lo-
cal evidence and support for such a decision, which is only
based on the instance attributes. This would be hardly rea-
sonably and justifiable if we were using approaches like
SVMs, which are in general not excluded from being used
in similar bootstrapping settings. The prediction is then
used in the next iteration to set the corresponding label at-
tribute for the other classifiers. However, if no appropriate
rule was found we prefer to absent from classifying instead
of applying the default rule (predicting the majority class)
so that the attribute may be filled up in consequent iter-
ations. Again, rule induction algorithm naturally provide
this option.

A deadlock may of course occur if no rules apply at all.
We are currently investigating this issue also with respect
to using different heuristics, but the overall preliminary re-
sults are very promising.

Nevertheless, the next natural step is to skip the binary
relevance decomposition and to (virtually) apply bootstrap-
ping directly in the SeCo training phase, hence to learn one
single theory with rules with label conditions in the body.

6 Conclusions
This work deals with the challenges and chances of using
rule induction in multilabel learning. We have presented
two main perspectives. The first one addresses the fact that
multilabel learning has to deal with sets of classes rather
than single classes. The second one addresses the problem
of label dependencies by using bootstrapping. In essence,
both issues are solved by extending the formulation of the
head and the body of a rule with additional conditions on
the labels. First experiments with the bootstrapping ap-
proach make us confident about the potential of multilabel
rule induction. However, we are still at the beginning of
implementing all the presented ideas.

Moreover, many other aspects have still to be addressed:
The right selection of the heuristic was already a complex
issue in traditional rule induction and has to be reviewed
for multilabel learning. Also, unordered and multiclass de-
cision lists gain new relevance. And of course, a combina-
tion of both approaches, leading to global rules describing
multilabel data, is also worth to be investigated.
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