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Abstract
Label ranking is a specific type of preference
learning problem, namely the problem of learn-
ing a model that maps instances to rankings over
a finite set of predefined alternatives (labels).
State-of-the-art approaches to label ranking in-
clude decomposition techniques that reduce the
original problem to binary classification; rank-
ing by pairwise comparison (RPC), for example,
constructs one binary problem for each pair of
alternatives. In general, each classification ex-
ample refers to the pairwise comparison of two
alternatives in a ranking. In this paper, we in-
troduce a new (meta) learning technique for la-
bel ranking, which is based on a labelwise in-
stead of a pairwise decomposition. The basic
idea is to train one model per class label, namely
a model that maps instances to ranks. Instead of
a quadratic number of binary problems, like in
RPC, this obviously gives rise to a linear number
of ordinal classification problems. We propose
a generalization of this approach for the practi-
cally relevant case in which the training data only
contains incomplete rankings, that is, rankings of
some but not all alternatives; in this case, only
imprecise information about the rank of individ-
ual labels can be derived. Moreover, we provide
an experimental study, in which the pairwise and
the labelwise decomposition techniques are com-
pared in a systematic way.

1 Introduction
Preference learning is an emerging subfield of machine
learning, which deals with the induction of preference
models from observed or revealed preference information
[10]. Such models are typically used for prediction pur-
poses, for example, to predict context-dependent prefer-
ences of individuals on various choice alternatives. De-
pending on the representation of preferences, individuals,
alternatives, and contexts, a large variety of preference
models are conceivable, and many such models have al-
ready been studied in the literature.

A specific type of preference learning problem is the
problem of label ranking, namely the problem of learn-
ing a model that maps instances to rankings (total orders)
over a finite set of predefined alternatives (labels). Several
methods for label ranking have already been proposed in
the literature [18]. Most of these methods are reduction
techniques transforming the original learning task into one

or several binary classification tasks. Moreover, all exist-
ing methods are relational in so far as they seek to learn
from relative or comparative preferences, such as pairwise
comparisons between alternatives [15]. Since a ranking of
alternatives, by its very nature, does indeed inform about
relative and not about absolute preferences, the prevalence
of the relational approach is of course completely under-
standable.

On the other hand, since the number of alternatives in
a label ranking problem is fixed, a ranking is uniquely
defined by the position (rank) of each of the alternatives,
which can be seen as absolute preference information. Ad-
mittedly, as will be explained in more detail later on, this
positional information is not always readily available for
training. Yet, it is arguably a bit surprising that, to the best
of our knowledge, an approach focused on the learning and
prediction of absolute preferences has not even been tried
so far.

In this paper, we introduce an approach of that kind,
namely a new meta-learning technique for label ranking,
which is based on a labelwise instead of a pairwise decom-
position. The basic idea is to train one model per class la-
bel, namely a model that maps instances to ranks. In other
words, given a new query instance, the idea is to predict
the rank of each individual label right away. Unlike exist-
ing decomposition techniques, in which the reducts are bi-
nary classification problems, this approach leads to a linear
number of ordered multi-class problems.

The paper is organized as follows. The next section pro-
vides some background of the label ranking problem, and
Section 3 reviews existing methods for tackling this prob-
lem. Our new approach based on labelwise decomposition
(LWD) is introduced in Section 4. Section 5 is devoted
to a general discussion of similarities and differences be-
tween reduction techniques for label ranking. In Section 6,
we provide an experimental study, in which LWD is com-
pared with existing decomposition techniques in a system-
atic way. The paper ends with some concluding remarks in
Section 7.

2 Label Ranking
Let Y = {y1, . . . , yK} be a finite set of (choice) alterna-
tives; adhering to the terminology commonly used in su-
pervised machine learning, and accounting for the fact that
label ranking can be seen as an extension of multi-class
classification, the yi are also called class labels. We con-
sider total order relations � on Y , that is, complete, transi-
tive, and antisymmetric relations, where yi � yj indicates
that yi precedes yj in the order. Since a ranking can be
seen as a special type of preference relation, we shall also



say that yi � yj indicates a preference for yi over yj .
Formally, a total order� can be identified with a permu-

tation π̄ of the set [K] = {1, . . . ,K}, such that π̄(i) is the
position of yi in the order. We denote the class of permuta-
tions of [K] (the symmetric group of order K) by SK . By
abuse of terminology, though justified in light of the above
one-to-one correspondence, we refer to elements π̄ ∈ SK
as both permutations and rankings.

In the setting of label ranking, preferences on Y are
“contextualized” by instances x ∈ X, where X is an under-
lying instance space. Thus, each instance x is associated
with a ranking �x of the label set Y or, equivalently, a per-
mutation π̄x ∈ SK . More specifically, since label rankings
do not necessarily depend on instances in a deterministic
way, each instance x is associated with a probability distri-
bution P(· |x) on SK . Thus, for each π̄ ∈ SK , P(π̄ |x)
denotes the probability to observe the ranking π̄ in the con-
text specified by x.

As an illustration, suppose X is the set of people
characterized by attributes such as sex, age, profes-
sion, and marital status, and labels are music genres:
Y = {Rock, Pop, Classic, Jazz}. Then, for x =
(m, 30, teacher,married) and π̄ = (2, 1, 4, 3), P(π̄ |x) de-
notes the probability that a 30 years old married man, who
is a teacher, prefers Pop music to Rock to Classic to Jazz.

2.1 The Label Ranking Problem
The goal in label ranking is to learn a “label ranker”, that
is, a model

M : X −→ SK
that predicts a ranking π̂ for each instance x given as an
input. More specifically, seeking a model with optimal
prediction performance, the goal is to find a risk (expected
loss) minimizer

M∗ ∈ argmin
M∈M

∫
X×SK

D(M(x), π̄) dP ,

where M is the underlying model class, P is the joint mea-
sure P(x, π̄) = P(x)P(π̄ |x) on X × SK and D is a loss
function on SK ; common choices of D will be introduced
below.

As training data D, a label ranker uses a set of instances
xn (n ∈ [N ]), together with information about the associ-
ated rankings πn. Ideally, complete rankings are given as
training information, i.e., a single observation is a tuple of
the form (xn, πn) ∈ X × SK ; we call an observation of
that kind a complete example. From a practical point of
view, however, it is important to allow for incomplete in-
formation in the form of a ranking of some but not all of
the labels in Y:

yτ(1) �x yτ(2) �x . . . �x yτ(J) , (1)

where J < K and {τ(1), . . . , τ(J)} ⊂ [K]. For example,
for an instance x, it might be known that y2 �x y1 �x y5,
while no preference information is given about the labels
y3 or y4.

In the following, we will write complete rankings π̄ with
an upper bar (as we already did above). If a ranking π
is not complete, then π(j) is the position of yj in the in-
complete ranking, provided this label is contained, and
π(j) = 0 otherwise; thus, if π̄ is a “completion” of π, then
π̄(k) ≥ π(k) for all k ∈ [K]. In the above example (1),
π = (2, 1, 0, 0, 3). We denote by |π| = {j |π(j) > 0} the
size of the ranking; thus, π is complete if |π| = K.

2.2 Prediction Accuracy
The prediction accuracy of a label ranker is assessed by
comparing the true ranking π̄ with the prediction π̂, us-
ing a distance measure D on rankings. Among the most
commonly used measures is the Kendall distance, which
is defined by the number of inversions, that is, index pairs
{i, j} ⊂ [K] such that the order of yi and yj in π̄ is inverted
in π̂:

D(π̄, π̂) =
∑

1≤i<j≤K

q
(π̄(i)− π̄(j))(π̂(i)− π̂(j)) < 0

y

(2)
The well-known Kendall rank correlation measure is an
affine transformation of (2) to the range [−1,+1]. Besides,
the sum of L1 or L2 losses on the ranks of the individual
labels are often used as an alternative distance measures:

D1(π̄, π̂) =

M∑
i=1

|π̄(i)− π̂(i)| (3)

D2(π̄, π̂) =

M∑
i=1

(π̄(i)− π̂(i))2 (4)

These measures are closely connected with two other well-
known rank correlation measures: Spearman’s footrule is
an affine transformation of (3) to the interval [−1,+1],
and Spearman’s rank correlation (Spearman’s rho) is such
a transformation of (4).

3 Label Ranking Methods
The arguably most straightforward way to addressing the
label ranking problem is to treat it as a classification prob-
lem with K! classes, considering each ranking π̄ ∈ SK as
a separate (meta-)class; this is to some extent comparable
to the label powerset approach to multilabel classification
[17], which considers each subset Y of the original label
set Y as a new meta-class. Obviously, however, this ap-
proach comes with a number of disadvantages, making it
likely to fail in practice. First of all, the number of meta-
classes is even larger than for multilabel classification. For
example, with only K = 6 labels, the resulting classifica-
tion problem would consist of 720 meta-classes—there is
no classifier that can handle such a number of classes in a
reasonable way. Second, it is not clear how to apply this
approach in the case of incomplete observations (1). Third,
by treating each meta-class as a separate category, this ap-
proach fails to exploit the structure on the output space SK ,
which is induced by the underlying distance measure D.

Indeed, label ranking can be seen as a specific type of
structured output prediction [1], namely the problem to
predict structures in the form of permutations. In the litera-
ture, several methods for label ranking have been proposed
that try to exploit the structure on SK in one way or the
other, including generalizations of standard machine learn-
ing methods such as nearest neighbor estimation [3] and
decision tree learning [6], as well as statistical inference
based on parametrized models of rank data [5].

Here, we are specifically interested in reduction tech-
niques, that is, meta-learning techniques that reduce the
original label ranking problem into one or several clas-
sification problems that are easier to solve. Among the
techniques proposed so far, there are two approaches that
both reduce label ranking to binary classification, albeit
in a different way. Whereas the first technique, constraint
classification (CC), produces a single “large” classification



problem, the second one, ranking by pairwise comparison
(RPC), yields a quadratic (in K) number of “small” binary
problems. In the following, both approaches will be pre-
sented in more detail.

3.1 Constraint Classification
Constraint classification [12] is based on the idea of learn-
ing value functions fk : X −→ R, one for each label yk
(k ∈ [K]), that estimate a (latent) degree of utility of yk in
the context specified by an instance. Given such functions,
a prediction π̂ for a new query instance x is then simply
obtained by sorting the labels in decreasing order of their
(estimated) utility:

π̂ = argsort
k∈[K]

fk(x) (5)

More specifically, assuming X = Rd, the value functions
are taken as linear functions of the form

fk(x) = fk(x1, . . . , xd) =

d∑
i=1

αk,ixi (6)

with label-specific coefficients αk,i (i ∈ [d]).
Now, a pairwise preference yk �x yj between two labels

translates into the constraint fk(x)− fj(x) > 0 or, equiv-
alently, fj(x) − fk(x) < 0. Both constraints, the positive
and the negative one, can be expressed in terms of the sign
of an inner product 〈z,α〉, where

α = (α1,1, . . . , α1,d, α2,1, . . . , α2,d, . . . , αK,1, . . . , αK,d)

is a concatenation of all label-specific coefficients. Cor-
respondingly, the vector z is constructed by mapping the
original d-dimensional training example x = (x1, . . . , xd)
into an (K × d)-dimensional space: For the positive con-
straint, x is copied into the components ((k − 1) × d +
1), . . . , (k × d) and its negation −x into the components
((j−1)×d+1), . . . , (j×d); the remaining entries are filled
with 0. For the negative constraint, a vector is constructed
with the same elements but reversed signs. Both constraints
can be considered as training examples for a conventional
binary classifier in a (K × d)-dimensional space: The first
vector is a positive and the second one a negative example.

CC constructs training examples of that kind by splitting
observed rankings into pairwise preferences. More specif-
ically, an incomplete ranking (1) is split into J − 1 prefer-
ences yτ(k) �x yτ(k+1) (k ∈ [J − 1]), and each of these
preferences is turned into a positive and a negative exam-
ple for the binary classifier as described above. The corre-
sponding binary classification problem can then be tackled
by standard methods for fitting a separating hyperplane in
this space, that is, a suitable vector α satisfying as many as
possible constraints.

3.2 Ranking by Pairwise Comparison
Ranking by pairwise comparison [15] is an extension of
pairwise classification [9], an established technique for re-
ducing multi-class to binary classification. In the setting of
label ranking, RPC trains one modelMi,j : X −→ [0, 1]
for each pair of labels {yi, yj}; thus, K(K − 1)/2 such
models are needed in total. Given instance x as input,
the model Mi,j is supposed to predict the probability of
yi �x yj , i.e.,Mi,j(x) is an estimation of the probability
P(π(i) < π(j) |x).

The data Di,j used to trainMi,j is constructed from the
original data D as follows: If xn is an instance in D that has
been observed together with a possibly incomplete ranking
of labels in Y , then

• xn is added as a positive example to Di,j if the ranking
contains both yi and yj , and the former precedes the
latter;
• xn is added as a negative example to Di,j if the rank-

ing contains both yi and yj , and the latter precedes the
former;
• xn is ignored if either yi or yj (or both) are missing in

the ranking.
Once Di,j has been constructed, any method for (prob-
abilistic) binary classification can be used to induce the
modelMi,j .

At prediction time, when a ranking π̂ needs to be pre-
dicted for a new instance x, this instance is first submitted
to each of the models Mi,j (1 ≤ i < j ≤ K), and the
predictions of these models are combined into a (weighted)
preference relation

P =


− p1,2 p1,3 · · · p1,K

p2,1 − p2,3 · · · p2,K

...
...

...
. . .

...
pK,1 pK,2 pK,3 · · · −

 , (7)

where

pi,j =

{
Mi,j(x) if i < j

1−Mj,i(x) if j < i
.

The preference relation (7) does normally not suggest a
ranking π̂ in an unequivocal way: Since the binary mod-
els Mi,j are trained independently of each other, and the
predictions pi,j are not necessarily perfect, P may exhibit
inconsistencies such as preferential cycles. What is needed,
in general, is a ranking procedure that turns P into a rank-
ing π̂.

The standard approach in RPC is to apply a weighted
voting procedure, in which the labels are sorted according
to the sum of weighted votes in their own favor:

π̂ = argsort
k∈[K]

sk(x), (8)

where
sk(x) =

∑
1≤j 6=k≤K

pk,j .

Under certain technical assumptions (the pi,j are indepen-
dent and unbiased estimations of P(π(i) < π(j) |x)), it
can be shown that the prediction (8) is minimizing the ex-
pected loss with respect to (4). For other loss functions,
other ranking procedures might be optimal.

4 Labelwise Decomposition
In this section, we introduce a new meta-learning technique
for label ranking, which is based on the idea of reducing
the original problem to standard classification problems in
a labelwise manner.

4.1 The Case of Complete Training Information
If the training data D consists of complete examples
(xn, π̄n), then each such example informs about the rank
π̄(k) of the label yk in the ranking associated with xn.
Thus, a quite natural idea is to learn a model

Mk : X −→ [K]

that predicts the rank of yk, given an instance x ∈ X as an
input. Indeed, such a model can be trained easily on the
data

Dk =
{

(xn, rn) | (xn, π̄n) ∈ D, rn = π̄n(k)
}
⊂ X×[K]

(9)



It is important to note, however, that the classification prob-
lem thus produced is not a binary one, like in CC and RPC.
Instead, we need to solve a multi-class problem with K
classes, where each class corresponds to a possible rank.
More specifically, since these ranks have a natural order,
we are facing an ordinal classification problem.

Like in RPC, we assume that a probabilistic approach is
used to train the models Mk (k ∈ [K]). For example, if
the (ordinal) classifiers are specified by a parameter θ ∈ Θ,
Mk could be identified by the maximum likelihood esti-
mate

θk = argmax
θ∈Θ

N∏
n=1

P(rn |xn, θ) . (10)

Then, given a new query instance x, each of these models
is supposed to predict a probability distribution

Mk(x) =
(
pk,1, pk,2, . . . , pk,K

)
∈ [0, 1]K , (11)

where pk,j = P(π̄(k) = j |x) is the (predicted) probabil-
ity that yk is on rank j.

4.2 Aggregation
As we have seen in previous sections, each reduction tech-
niques also involves an aggregation procedure, which is
responsible for combining the predictions of the classifica-
tion models into a ranking π̂. In the case of CC and RPC,
these aggregations are given by the sorting procedures (5)
and (8), respectively.

Consider a loss function D on SK that is labelwise de-
composable, i.e., which can be written in the form

D(π̄, π̂) =

K∑
k=1

Dk(π̄(k), π̂(k)).

Obviously, the L1 and L2 loss (3) and (4) are both of this
type. Then, given probabilities of the form (11), the ex-
pected loss caused by a prediction π̂ can be written as

E
(
D(π̄, π̂)

)
=

K∑
k=1

E
(
Dk(π̄(k), π̂(k))

)
(12)

=

K∑
k=1

K∑
j=1

Dk(j, π̂(k)) · pk,j

=

K∑
k=1

Lk(π̂(k)) ,

where Lk(r) is the cost of putting yk on position r, namely
the loss expected on yk when assigning this label to posi-
tion r in the ranking π̂. In the case of (3), for example, this
cost is given by

Lk(r) =

K∑
j=1

|j − r| · pk,j .

Thus, an optimal solution would consists of assigning yk
the position π̂(k) = r for which Lk(r) is minimal. How-
ever, noting that each position r ∈ [K] must be assigned
at most once, this approach is obviously not guaranteed to
produce a feasible solution. Instead, the minimization of
(12) requires the solution of an optimal assignment prob-
lem [4]:
• labels yk ∈ Y must be uniquely assigned to ranks r =
π̂(k) ∈ [K];

• assigning yk to rank r causes a cost of Lk(r);

• the goal is to minimize the sum of all assignment
costs.

Assignment problems of that kind have been studied ex-
tensively in the literature, and efficient algorithms for their
solution are available. The well-known Hungarian algo-
rithm [16], for example, solves the above problem in time
O(K3). Such algorithms can be used to produce a (risk
minimizing) prediction π̂ on the basis of probabilistic pre-
dictions (11).

4.3 The Case of Incomplete Training
Information

As mentioned before, the original training data D is not
necessarily supposed to contain complete rank informa-
tion; instead, for a training instance xn, only an incomplete
ranking πn of a subset of the labels in Y might have been
observed, while the complete ranking π̄n is not given. In
this case, the above method is not directly applicable: If
at least one label is missing, i.e., |πn| < K, then none of
the true ranks π̄n(k) is precisely known; consequently, the
training data (9) cannot be constructed.

Nevertheless, even in the case of incomplete rankings,
non-trivial information can be derived about the rank π̄(k)
for at least some of the labels yk. In fact, if |π| = J and
π(k) = r > 0, then

π̄(k) ∈
{
r, r + 1, . . . , r +K − J

}
.

Of course, if π(k) = 0 (i.e., yk is not present in the rank-
ing), only the trivial information π̄(k) ∈ [K] can be de-
rived. Yet, more precise information can be obtained under
additional assumptions. For example, if π is known to be
the top of the ranking π̄, then{

π̄(k) = π(k) if π(k) > 0
π̄(k) ∈ {J + 1, . . . ,K} if π(k) = 0

. (13)

This scenario is highly relevant, since top-ranks are ob-
served in many practical applications.

In general, the type of training data that can be derived
for a label yk in the case of incomplete rank information
are examples of the form(

xn, Rn
)
∈ X× 2[K] , (14)

that is, an instance xn together with a set of possible ranks
Rn. The problem of learning from data with imprecise
class information has recently been studied in the liter-
ature, where it is called learning from ambiguously la-
beled examples [13] or learning from partial labels [11;
7]. As explained in [13], a reasonable approach to learn-
ing from imprecise data is to combine model identification
and data disambiguation, that is, trying to fit an optimal
model while simultaneously finding the “true data”. Again
adopting the principle of maximum likelihood inference,
one way to realize this idea is to maximize a generalized
likelihood function:

θk = argmax
r∈R, θ∈Θ

N∏
n=1

P(rn |xn, θ) , (15)

where R is the set of all selections of the rank information
(14), that is, the set of all vectors r = (r1, . . . , rN ) ∈ [K]N

such that rn ∈ Rn.



4.4 Probabilistic Modeling of Missing Label
Information

Under additional assumptions about the process that elim-
inates labels from a complete ranking π̄, this approach can
be further refined. For example, under the “missing at ran-
dom” assumption, according to which the K − J labels
that are missing have been selected uniformly at random
from the set of all K labels, the probability to observe
π(k) = j > 0 is given by

j+K−J∑
r=j

P(r |x, θk)

(
r−1
r−j
)(

K−r
K−J−r+j

)(
K
J

) . (16)

Each term in (16) expresses the probability that the true
rank of yk in π̄ is r, r − j labels are removed “above” yk
(thus bringing it to position j), and the other K−J − r+ j
labels are removed “below” yk. The probability to observe
π(k) = 0 is given by

K∑
r=1

P(r |x, θk)
J

K
=

J

K
,

i.e., by a constant that can be ignored in likelihood maxi-
mization. Thus, estimation of θk can be accomplished as
follows:

θ̂k = argmax
θ∈Θ

∏
n∈[N ],πn(k)>0

πn(k)+K−|πn|∑
r=πn(k)

Pr,πn(k) (17)

with

Pr,πn(k) = P(r |x, θ)

(
r−1

r−πn(k)

)(
K−r

K−|πn|−r+πn(k)

)(
K
|πn|
)

Under the top-rank model (13), the probability to observe
π(k) = j is given by{

P(j |x, θk) if j > 0∑K
r=|πn|+1 P(r |x, θk) if j = 0

, (18)

and θk can be estimated as follows:

θ̂k = argmax
θ∈Θ

∏
n∈[N ],πn(k)>0

P(πn(k) |x, θ) (19)

×
∏

n∈[N ],πn(k)=0

K∑
r=|πn|+1

P(r |x, θ)

For our experiments in Section 6, we implemented (17) and
(19) using a corresponding extension of ordinal logistic re-
gression. Thus, the probabilities P(r |x, θ) are expressed
in terms of log-linear functions. More specifically, ordinal
logistic regression models ratios of the cumulative distri-
bution:

log

(
ck(x)

1− ck(x)

)
= βk +w>x (20)

for k ∈ [K − 1], where ck(x) = P(r ≤ k |x) is the (con-
ditional) probability of a rank ≤ k (hence P(r |x, θ) =
cr(x)− cr−1(x)). The parameter vector θ is here given by
θ = (w, β1, . . . , βK−1). Note that, since the left-hand side
in (20) is non-decreasing in k, the βk need to satisfy the
condition β1 ≤ β2 ≤ · · · ≤ βK−1.

5 Comparison of Reduction Techniques
Different reduction techniques are not easily comparable,
especially because the performance of a meta-technique
also depends on the base learner that is used to instantiate
this technique. In this section, we nonetheless make an at-
tempt at elaborating on commonalities and differences be-
tween existing reduction techniques (namely RPC and CC)
and our new proposal (LWD), albeit not in much detail and
not on a very technical level.

5.1 Complexity
If the original label ranking data consists of |D| = N com-
plete examples, then the total number of examples gener-
ated by RPC is NK(K − 1)/2. Since CC generates an
example (actually even two) for each pairwise compari-
son, too, the same (or even twice this) number of exam-
ples can be produced for this method. However, whereas
RPC distributes these examples over K(K− 1)/2 instance
spaces Xi,j , which are all identical to the original space
X, CC combines them in a single expanded feature space
X whose dimensionality is K times as high, and solves
a single problem in this space. In any case, even when
leaving the dimensionality of the input space aside, RPC
is theoretically more efficient than CC if the underlying
base learner has a superlinear complexity, say,O(Nα) with
α > 1. In fact, in that case, solving K(K − 1)/2 problems
of size N is less expensive than solving a single problem
of size NK(K − 1)/2—the complexity of the former is
O(K(K−1)Nα), while the latter is inO((K(K−1)N)α).

It should also be mentioned that, in its original version,
CC only constructs pairwise comparisons between con-
secutive labels in a ranking, not between all labels (hop-
ing to capture the other relations implicitly via transitiv-
ity). In this case, the total number of examples reduces to
N(K − 1). Of course, the same approach could be applied
to any other pairwise method, including RPC. In terms of
prediction performance, however, it turns out that the re-
dundancy of the full encoding has significant advantages.

LWD constructs K classification problems of size N ,
thus KN examples in total; like in RPC, each of these
problems uses the original input space X. The complex-
ity is not directly comparable, however, since LWD solves
ordinal classification problems, whereas RPC and CC solve
binary problems. Using decomposition techniques like
those proposed by Frank and Hall [8], each ordinal prob-
lem could again be reduced to K − 1 binary problems
of the same size. Then, the overall complexity would be
O(K(K − 1)Nα), the same as for RPC.

Needless to say, a comparison becomes even more diffi-
cult in the case of incomplete training information. In that
case, LWD requires methods for learning from imprecise
data, such as (15). Therefore, the underlying base learners
are no longer comparable.

In terms of space efficiency and complexity at predic-
tion time, LWD may have an advantage in comparison to
RPC, as it only needs to store and query a linear instead of
a quadratic number of models. Again, however, since the
LWD models are ordinal and the RPC models are binary
classifiers, a direct comparison is not completely straight-
forward.

5.2 Loss of Information
Every reduction technique involves a certain loss of in-
formation. This can be seen most clearly from the fact



that, from the information preserved on the level of the de-
composition, the original probability distribution P(·) =
P(· |x) on SK cannot always be recovered. For exam-
ple, the uniform distribution P(π̄) ≡ (K!)−1 and the bi-
modal distribution P′(π̄) = 1/2 for π̄ = (1, 2, . . . ,K)
and π̄ = (K,K − 1, . . . , 1) (and = 0 otherwise) both in-
duce the distribution P(yi � yj) ≡ 1/2 on the level of
pairwise comparisons. Thus, even if these pairwise proba-
bilities were learned correctly, there is no chance to predict
the true ranking from them. Obviously, the reason for this
loss of information is the decomposition process itself: De-
composing a set of complex objects (in our case rankings)
into a set of simple objects (e.g., pairwise preferences), the
latter does not necessarily allow to recover the former.

As an important consequence, risk minimizing predic-
tions cannot be produced for all loss functions. For exam-
ple, as shown in [14], RPC is able to minimize (in expecta-
tion) the Kendall loss (2) and the Spearman loss (4) but not
the L1 loss (3). LWD, on the other hand, is able to mini-
mize both L1 and L2, just like any other labelwise decom-
posable loss—this can be seen immediately from (12). It
cannot minimize losses like Kendall, however, since prob-
abilities of label inversions cannot be recovered from rank-
probabilities on individual labels.

5.3 Modeling Incomplete Rank Information
As mentioned before, training information will normally
not be provided in the form of complete rankings π̄ ∈ SK ;
instead, only incomplete examples (1) are available as
training data. For a label ranking method, the ability to
handle such information in a proper way is therefore of ut-
most importance.

Methods based on pairwise comparisons, such as CC and
RPC, do have this ability and can handle missing label in-
formation in a quite straightforward way. In RPC, for ex-
ample, if a label yk is missing for a training instance xn,
then none of the pairwise learners Mi,j with k ∈ {i, j}
will get xn as an example. Similarly, missing labels reduce
the number of training examples in CC. Yet, the examples
that are produced from the observed labels are still precise.
In other words, although missing labels reduce the number
of examples, they do not affect the type and information
content of those examples that are still produced. Corre-
spondingly, the same learning algorithms can be used, and
since they are applied to smaller data sets, the learning pro-
cess will even become more efficient.

This is an important difference to LWD. Here, even a sin-
gle missing label may affect all examples that are produced
for a training instance xn—the class information (position
of the label) will become imprecise and/or uncertain. Cor-
respondingly, standard methods for ordinal classification
are no longer applicable; instead, generalized methods for
learning from imprecisely labeled examples must be used.
Thus, missing label information may affect the quality of
all examples that are derived from an instance xn and,
moreover, tend to increase the complexity of the learning
problem instead of reducing it. Seen from this perspective,
learning from comparative preferences does indeed appear
to be advantageous to learning from absolute preferences.

6 Experiments
In this section, we experimentally compare LWD with RPC
and CC in terms of prediction accuracy. All three meta-
techniques are implemented using logistic regression as a
base learner; RPC and CC get along with the basic binary

version, whereas LWD requires an extended ordinal variant
(cf. Section 4.4).

6.1 Data
We used several benchmark data sets for label ranking that
have also been used in previous studies [15]; these are
semi-synthetic data sets, namely label ranking versions of
(real) UCI multi-class data. Moreover, we used two real la-
bel ranking data sets: The Sushi data1 consists of 5000 in-
stances (customers) described by 11 features, each one as-
sociated with a ranking of 10 types of sushis. The Students
data [2] consists of 404 students (each characterized by 126
attributes) with associated rankings of five goals (want to
get along with my parents, want to feel good about myself,
want to have nice things, want to be different from others,
want to be better than others). See Table 1 for a summary
of the data.

Two missing label scenarios were simulated, namely the
missing-at-random setting (16) and the top-rank setting
(13). In the first case, a biased coin is flipped for every
label in a ranking to decide whether to keep or delete that
label; the probability for a deletion is specified by a pa-
rameter p ∈ [0, 1]. Thus, p × 100% of the labels will be
missing on average. Similarly, in the second case, only the
J top-labels in a ranking are kept, where J has a binomial
distribution with parameters K and 1− p.

Table 1: Properties of the data sets.

data set # inst. (N) # attr. (d) # labels (K)
authorship 841 70 4
glass 214 9 6
iris 150 4 3
pendigits 10992 16 10
segment 2310 18 7
vehicle 846 18 4
vowel 528 10 11
wine 178 13 3
sushi 5000 11 10
students 404 126 5

6.2 Results
The results in Tables 2 and 3 are presented as averages of
5×10-fold cross validation in terms of the Kendall correla-
tion measure; other measures such as (3) and (4) led to sim-
ilar results. These tables support the following conclusions:
(i) LWD and RPC perform much better than CC, which
is not competitive. (ii) Overall, the drop in performance
due to missing labels is more pronounced in the missing-
at-random than in the top-rank setting. (iii) Compared with
RPC, LWD is quite competitive if rankings are (almost)
complete—in this case, it tends to be even a bit better; on
the other hand, it drops in performance more quickly in the
case of missing label information (the difference was found
significant for 30% and 60% missing rate in the missing-at-
random setting, using a two-tailed sign test at the 5% level).

7 Summary and Conclusion
In this paper, we introduced and analyzed labelwise decom-
position (LWD) as a new meta-learning technique for la-
bel ranking. In contrast to existing techniques, which are

1http://kamishima.new/sushi/



Table 2: Performance in terms of Kendall’s tau on synthetic data: missing-at-random (above) and top-rank setting (below).
complete ranking 30% missing labels 60% missing labels

LWD RPC CC LWD RPC CC LWD RPC CC
authorship .913±.01 .910±.02 .594±.04 .860±.02 .888±.03 .559±.05 .682±.02 .874±.03 .357±.06
glass .883±.04 .882±.04 .834±.06 .837±.04 .854±.04 .825±.06 .760±.04 .790±.06 .748±.07
iris .928±.06 .885±.07 .828±.06 .809±.06 .875±.07 .802±.07 .712±.08 .772±.10 .729±.11
pendigits .928±.00 .932±.00 .584±.01 .914±.00 .932±.00 .534±.01 .895±.00 .929±.00 .506±.01
segment .943±.01 .934±.01 .628±.05 .923±.01 .932±.01 .560±.06 .895±.01 .919±.01 .556±.10
vehicle .867±.02 .854±.02 .839±.02 .828±.02 .834±.03 .823±.03 .759±.03 .778±.03 .759±.05
vowel .674±.02 .647±.02 .577±.03 .656±.02 .643±.02 .548±.03 .609±.02 .612±.02 .525±.02
wine .908±.06 .921±.05 .847±.10 .882±.06 .894±.07 .790±.07 .743±.07 .855±.10 .775±.12
Avg. Rank 1.25 1.75 3 1.875 1.125 3 2.375 1 2.625
authorship .913±.01 .910±.02 .594±.04 .913±.02 .903±.02 .582±.04 .909±.02 .893±.03 .544±.04
glass .883±.04 .882±.04 .834±.06 .872±.05 .880±.04 .824±.06 .812±.11 .845±.04 .819±.05
iris .928±.06 .885±.07 .828±.06 .924±.05 .884±.07 .811±.07 .902±.09 .850±.09 .797±.06
pendigits .928±.00 .932±.00 .584±.01 .919±.00 .931±.00 .535±.01 .863±.01 .920±.00 .507±.00
segment .943±.01 .934±.01 .628±.05 .932±.01 .932±.01 .555±.07 .891±.03 .916±.01 .529±.12
vehicle .867±.02 .854±.02 .839±.02 .859±.02 .850±.02 .828±.03 .841±.03 .832±.03 .812±.03
vowel .674±.02 .647±.02 .577±.03 .665±.03 .645±.02 .567±.02 .619±.03 .645±.02 .527±.02
wine .908±.06 .921±.05 .847±.10 .904±.05 .917±.06 .822±.10 .896±.07 .916±.05 .783±.10
Avg. Rank 1.25 1.75 3 1.5 1.5 3 1.75 1.375 2.875

Table 3: Performance in terms of Kendall’s tau on real-world data: missing-at-random (above) and top-rank setting (below).
sushi 0% 10% 20% 30% 40% 50% 60% 70%
LWD .329±.010 .328±.009 .329±.010 .328±.009 .328±.010 .327±.009 .325±.010 .321±.010
RPC .329±.010 .329±.010 .328±.009 .328±.009 .327±.009 .327±.010 .325±.009 .322±.010
CC .075±.011 .072±.012 .072±.011 .072±.013 .070±.013 .069±.012 .065±.012 .060±.013
LWD .329±.010 .329±.010 .329±.010 .329±.010 .328±.010 .325±.010 .323±.010 .319±.010
RPC .329±.010 .329±.010 .329±.010 .329±.010 .328±.010 .326±.010 .324±.010 .321±.010
CC .075±.011 .069±.013 .071±.012 .071±.013 .072±.012 .069±.012 .068±.011 .065±.009

students 0% 10% 20% 30% 40% 50% 60% 70%
LWD .500±.046 .474±.053 .459±.055 .431±.050 .411±.054 .391±.054 .376±.059 .389±.066
RPC .477±.037 .471±.052 .458±.052 .458±.056 .443±.063 .445±.044 .446±.052 .445±.045
CC .455±.064 .424±.068 .339±.073 .304±.056 .316±.062 .284±.058 .274±.064 .268±.058
LWD .500±.046 .497±.048 .499±.044 .496±.044 .481±.048 .451±.042 .420±.057 .397±.056
RPC .477±.056 .460±.053 .456±.056 .452±.059 .445±.058 .441±.058 .449±.052 .445±.048
CC .455±.064 .457±.067 .448±.069 .438±.064 .378±.065 .378±.058 .268±.072 .162±.073

based on decomposing training information into compara-
tive preferences, this approach is based on absolute pref-
erence information in the form of ranks. The idea is quite
simple: For each individual label, a model is learned that,
given a query instance as an input, predicts the rank of the
label in the associated ranking.

Technically, LWD reduces label ranking to ordinal
classification problems with imprecise class information.
Moreover, the aggregation step, which is responsible for
combining the predictions of these classifiers into a com-
plete label ranking, can be realized by means of an optimal
assignment problem—this way, each labelwise decompos-
able loss function can be minimized in expectation.

Comparing LWD with state-of-the-art reduction tech-
niques for label ranking, we did not find any systematic
improvements in terms of prediction accuracy. On the con-
trary, although improvements could be achieved on several
data sets in the case of (almost) complete training data,
LWD seems to be more sensitive to missing label informa-
tion. Actually, these results fully confirm our expectations,
and can be explained by the fact that absolute preference in-
formation is more strongly affected by missing labels than
relative preference information.

Overall, however, and especially in light of the unambi-
tious expectations we started with, we found LWD to be
surprisingly competitive. Moreover, one should keep in
mind that LWD is a meta-learning technique whose perfor-
mance is strongly influenced by the base learner. Since the
implementation of this base learner is non-trivial, and the
version used in this paper not necessarily optimal, there is
certainly scope to improve this part of the method. Besides,

LWD has other interesting properties. For example, while
its performance is competitive to RPC, it only needs a lin-
ear instead of a quadratic number of models, which might
not only be advantageous from a complexity point of view
but also interesting with regard to the comprehensibility of
a label ranker.

All things considered, we therefore believe that our re-
sults, despite not (yet) advancing the state-of-the-art in
terms of performance, are promising enough to justify a
further investigation of LWD as an alternative learning
technique for label ranking. For future work, we therefore
plan to explore this approach in more depth and to develop
it further, with the goal to fully exploit its potential.
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J. Fürnkranz and E. Hüllermeier, editors, Preference
Learning. Springer-Verlag, 2010.


	Introduction
	Label Ranking
	The Label Ranking Problem
	Prediction Accuracy

	Label Ranking Methods
	Constraint Classification
	Ranking by Pairwise Comparison

	Labelwise Decomposition
	The Case of Complete Training Information
	Aggregation
	The Case of Incomplete Training Information
	Probabilistic Modeling of Missing Label Information

	Comparison of Reduction Techniques
	Complexity
	Loss of Information
	Modeling Incomplete Rank Information

	Experiments
	Data
	Results

	Summary and Conclusion

