
Abstract
Data streams have some unique properties which
make them applicable in precise modeling of
many real data mining applications. The most
challenging property of data streams is the occur-
rence of “concept drift”. Recurring concepts is a
type of concept drift which can be seen in most
of real world problems. Detecting recurring con-
cepts makes it possible to exploit previous know-
ledge obtained in the learning process. This leads
to quick adaptation of the learner whenever a
concept reappears. In this paper, we propose a
learning algorithm called Pool and Accuracy
based Stream Classification (PASC), which takes
the advantage of maintaining a pool of classifiers
to track recurring concepts. Each classifier is
used to describe an existing concept. Two me-
thods are presented for classification task: active
classifier and weighted classifiers methods. For
the updating of the pool we use two methods:
Bayesian and Heuristic. Experimental results on
real and artificial datasets show the effectiveness
of weighted classifiers method while dealing
with sudden concept drifting datasets. In addi-
tion, the proposed updating methods outperform
the existing algorithms in datasets with arbitrary
attributes.

1 Introduction
As the data available on the web increases, processing

the large volume of data and extracting knowledge from
them is needed. These data are changing and they cannot
be saved and processed wholly in the same way as classic-
al data mining assumes. So, presenting new algorithms
which could learn and classify using this continuous and
unlimited stream of data is a challenging problem. Data
streams have some properties [Tsymbal, 2004]:

- They could not be saved completely and so a for-
getting mechanism is needed to forget ineffective
data.

- The processing of data should be done online and
the algorithm complexity should be simple.

- Most of the time, feature (or class) distribution is
changed over the time. This is known as concept
drift. If the drift takes effect in the target function,
it is named real concept drift.

† This paper is the resubmission of a paper with the same
topic published in Evolving Systems 4(1): 43-60 (2013).
(an earlier version was published ICDM Workshops 2011).

The concept drift could be sudden, gradual, incremen-
tal or recurring [Zliobaite, 2010a]. When the underlying
distribution of data changes suddenly at time tk, sudden
drift occurs. Gradual drift happens when in a period of
time, the data is drawn from two distributions and over
time, the probability of the old distribution decreases and
the probability of the new distribution increases. Incremen-
tal drift can be thought of as a generalized version of gra-
dual drift. Here in the drift period, there could be more
than two distributions to draw data from. However the
difference between the distributions should be small. The
other type of drift is recurring concept, where previously
seen concepts reappear after some time. One important
challenge in learning from data streams in the presence of
concept drift is distinguishing the drift from the noise. It is
important to note that I.I.D (Independent Identically Dis-
tribution) condition is not valid in the streams in which
concept drift occurs, but it is rational to think that small
size batches of data satisfy the I.I.D condition.
There have been extensive studies on sudden and gradual
concept drift detection and learning [Baena-García et al.,
2006; Gama and Castillo, 2006; Helmbold and Long,
1994; Klinkenberg and Joachims, 2000; Klinkenberg,
2004; Kolter and Maloof, 2007; Kuh et al., 1991; Gao et
al., 2008; Nishida, 2008; Bifet et al., 2010a; Bifet et al.,
2010b; Kuncheva and Zliobaite, 2009; Garnett, 2010;
Ikonomovska et al., 2010; Scholz and Klinkenberg, 2006;
Zliobaite, 2010b]. Early systems in data stream support
recurring concepts [Schlimmer and Granger, 1986; Wid-
mer and Kubat, 1993; Widmer and Kubat, 1996], howev-
er, they are mostly considered recently [Lazarescu, 2005;
Gama and Kosina, 2009; Katakis et al., 2009; Morshedlou
and Barforoush, 2009; Gomes et al., 2010], and identified
as a challenging problem in data streams.

In this paper we propose a learning algorithm which
tries to improve classifying concept drifting data streams
by exploiting the existence of recurring concepts. This is
done by maintaining a pool of classifiers which is updated
continuously while processing consecutive batches of data
(same as previous approaches, e.g. [Gomes et al., 2011;
Katakis et al., 2009; Ramamurthy and Bhatnagar, 2007]).
Each classifier of this pool is used to describe one of the
existing concepts. When a new batch of data is received,
first it is classified and after receiving the true labels of
instances, it is used to update an existing classifier in the
pool or add a new classifier to it. Deciding which classifier
should be updated or whether a new one is needed is done
by some examinations on the new batch of data and the
pool. Classification of the instances is done by using the
classifiers in the pool in an effective and adaptive way.
This algorithm is similar to the one used in [Katakis et al.,

Using a Classifier Pool in Accuracy Based Tracking of Recurring Concepts in Data
Stream Classification†

Mohammad Javad Hosseini, Zahra Ahmadi, Hamid Beigy
Sharif University of Technology

Tehran, Iran
{mjhosseini, z_ahmadi, beigy}@ce.sharif.edu

2009], but there are major changes in the steps of the algo-
rithm. In fact, our contribution is to propose a new method
to classify instances called weighted classifiers method.
The other novel part of the paper is the presentation of new
methods to update the pool using Bayesian formulation
and a heuristic method. Finally the presented methods are
compared with the existing ones.

The results show the effectiveness of our algorithm in
terms of accuracy and time especially in data streams of
sudden drifts. In addition, it is tried to solve some parame-
ter setting problems that exist in some of the previous me-
thods.
The structure of this paper is as follows: in the next sec-
tion the related works of recurring concepts is discussed.
In section 3 the proposed algorithm is presented. Section 4
evaluates the proposed algorithm and compares the expe-
rimental results to some previous methods. Section 5 con-
cludes the paper and discusses some future developments
which can be done.

2 Related Work
Concept drift learning of data streams has been studied

extensively in recent decades. As discussed previously,
drifts can be of different types. Most of studies are done
on the learning of sudden and gradual drifts. But one poss-
ible drift is the change of the current concept to one of the
previously seen concepts. As in data streams the learner
forgets some unused concepts passing the time, if in-
stances from a previously seen concept is presented to the
learner, it may classify them incorrectly. So the learner
may be fallen into the trap. Recurring concepts detection
and learning is a hard and challenging problem which has
been studied in recent years [Lazarescu, 2005; Gama and
Kosina, 2009; Katakis et al., 2009; Morshedlou and Bar-
foroush, 2009; Gomes et al., 2011]. All of presented me-
thods try to extract concept from received instances and
maintain the concept in a pool of concepts. Every time a
new instance arrives, the similarity to available concepts
is measured and a model is selected or created. The rest of
this section reviews the researches done in the area of
recurring concepts in data streams.

The first algorithm supporting recurring concepts con-
sists of an ensemble of classifiers [Ramamurthy and
Bhatnagar, 2007]. Each classifier is built on a data chunk
and none of the classifiers are deleted. Then while choos-
ing classifiers for the ensemble, the algorithm selects only
pertinent classifiers and so it supports the recurring con-
cepts.

Reference [Katakis et al., 2009] presents a framework
for the problem of recurring concepts. It extracts a con-
ceptual vector from the arrived batch of data using a trans-
formation function. We name the instances of a labeled

batch as B� = �����	, ������	, … , ��������	�, (1)

where ������	 is the (i+1) th instance of the labeled batch
of data. A conceptual vector � = ���, ��, … , ��	 is ex-
tracted from the batch where �� is a conceptual feature and
is calculated from

�� = ������ = �����: = 1. . #, $ = 1. . %, � ∈ '�� � ��) #*% #+,
�-�,� , .�,� ∶ $ = 1. . %� � ��) #0%12 � 3, (2)

where �� is the i th feature, '� is the set of possible values

of a nominal feature, -�,� and .�,� are the mean and stan-
dard deviation of the j th class of feature i. Then by using a

clustering algorithm on the available concepts, the algo-
rithm detects the recurring concepts. For each concept in
the pool, the algorithm preserves a classifier which will be
updated through the time. Clustering is done on the con-
ceptual vectors and using the Euclidean distance as the
similarity (difference) measure. If the similarity of a new
conceptual vector is more than a threshold, an available
concept and its classifier will be updated otherwise a new
cluster and classifier will be created. One major problem
of this framework is how to determine the threshold. The
threshold value is a problem specific parameter and
should be regularized by try and error.

Mean and standard deviation is used for the presenta-
tion of models in [Morshedlou and Barforoush, 2009] too.
This approach uses a proactive behavior versus drifts: by
knowing the current concept, it calculates the probability
of next concept. If the probability is more than a thre-
shold, the concept will be added to the buffer. If the algo-
rithm detects a drift and decides to behave proactively, it
selects a concept from the buffer. If the concept matches
the batch, it will be updated. If the concept does not match
the data and the algorithm behaves proactively, the next
concept will be selected else if the reactive behavior is
selected, a new classifier will be trained on the batch.
[Morshedlou and Barforoush, 2009] uses a heuristic ap-
proach to select proactive or reactive action. Here a thre-
shold parameter should be selected as well as doing some
computations to select the suitable behavior each time
which is a time consuming action.

The other approach uses meta-learners which can detect
the reoccurrence of concepts and activate the previous
classifiers using proactive behaviors [Gama and Kosina,
2009]. The meta-learner learns the space where the base
learner does well. When the algorithm enters the warning
phase of drift, meta-learners determine the performance of
their corresponding base learners. If the performance is
more than a threshold, the algorithm will use the base
learner to classify next instances. Here all base learners
and their corresponding meta-learners (referees) are main-
tained in the pool.

Another idea used in this domain is the use of context
space model to extract concept from learning model
[Gomes et al., 2010]. A context space is a N-tuple of the
form 7 = �+�8 , +�8 , … , +98 	, where +�8determines the ac-
ceptable regions of feature ai. Each classifier has a context
space description and all of them will be saved in a reposi-
tory. To select the appropriate model, the algorithm uses
their corresponding contexts.

3 Proposed Learning Algorithm
Our goal is to propose a new method named Pool and

accuracy based Stream Classification (PASC). The idea
followed in this method is similar to the method proposed
in [Katakis et al., 2009]. We maintain a pool of classifiers
which contains a number of classifiers each describing a
particular concept which is being updated through the
time. After receiving a batch of data, first we predict the
labels of its instances and then receive the true labels.
Then we can use the instances and their labels to update a
classifier in the pool or create a new classifier on this
batch of data and add it to the pool, if necessary. The clas-
sifiers added to the pool cannot grow arbitrarily the max-
imum number of classifiers in the pool cannot exceed a
predefined limit which is a parameter of our algorithm.

To update or create a classifier in the pool, first of all
the most relevant concept to the batch of labeled data is
selected. If the similarity is more than a predefined thre-
shold or the pool is full, we update the most relevant clas-
sifier with the newly arrived labeled batch. Otherwise we
construct a new classifier on it. The classifiers used in our
method can be any kind of updateable classifiers.

In the rest of this section, we seek how to classify the
batches of data and update the pool. As mentioned above,
after receiving each batch of data, the classification is
done and after receiving their labels, we update the pool.
In the proposed method, iteratively after receiving the tth
batch of unlabeled data Bt = (xt,1,xt,2,…,xt,k) such that xt,i is
the i th data of the tth batch, and its labels Lt=(l t,1,lt,2,…,lt,k)
such that l t,i is the label of xt,i, we follow the general
framework shown in Procedure 1.

Input : an infinite stream of batches of instances
Bt.
After classification of each instance Bt,i,
its label is revealed to the algorithm.

Output: Predicted labels of instances Bt,i.

Pool = Ø; // the pool of classifiers
C = make_classifier(B1,L1);
RDC = new classifier(); //only used in Bayesian
//method
ac = 1; // active classifier
W1=1;
Pool = Pool U {C};
X1=sum_data(B1);
RDC.update(X1,1); //1 is the label of X1
for j=2 to infinity do
 Classify Bt.
 Update Pool with Bt and Lt;
 determine active classifier (classifier weights);
end for

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Procedure 1. The main framework of PASC.

In line 2, C is the first classifier which will be added to
the pool and W1 (in line 6) is its weight. RDC is a classifi-
er and ac contains the active classifier which will be used
in the rest of the procedure. In line 8, X1 is an instance
constructed from B1. This procedure contains three main
phases which can be seen in lines 11 to 13.

In the following subsections, we consider the details of
the parameters discussed above and the three phases of the
algorithm.

3.1 Phase 1: Classifying the Batch
In this phase, after receiving a batch of unlabeled data

Bt, we classify the batch using the classifiers in the pool.
This task can be done in two ways. The first is similar to
the method used in [Katakis et al., 2009] and the second
tries to classify the batch using the weights assigned to the
classifiers.

Classifying the Batch According to the Active Classifi-
er

method is used in [Katakis et al., 2009] to classify in-
stances using the classifiers in the pool. The classifier
selected to classify the batch is named active classifier.
This classifier is defined according to the last iteration. If
in the last iteration, a new classifier was added to the pool,
it would be the active classifier. Otherwise, the classifier
that has the most relevance to the batch would be the ac-
tive classifier. The pseudocode of this method is shown in

Procedure 2. In line 2, ac is the active classifier and pl
stores the predicted labels of the instances.

for i=1 to k do
 pl[Bt,i] = Pool[ac].classify(Bt,i);
end for

1
2
3

Procedure 2. Classify batch according to active classifier.

Classifying the Batch According to the classifiers’
weights.

The first way of classifying a batch uses the active clas-
sifier that is appropriate for the last batch of data. Howev-
er, when a sudden concept drift occurs, the method’s per-
formance decreases significantly, because the appropriate
classifier for the last batch is not appropriate for the cur-
rent batch anymore. We suggest using the classifiers in
the pool in an adaptive way. A positive weight is assigned
to each classifier in the beginning of processing the batch
according to the performance of the classifier on the pre-
vious batch and when we want to classify an instance, we
use the classifier with the highest weight. When the true
label is revealed to the algorithm, the classifiers’ weights
can be updated. Updating the weights is done according to
the following rule: :;�$	 = :�$	 ∗ =>��,�	, (3)

where w(j) is the current weight of j th classifier and
w’(j) is its new weight and β is a parameter in [0,1). If the
j th classifier classifies the i th instance correctly, M(j,i) will
be 0, otherwise it is 1. Equation (1) is inspired from
[Freund and Schapire, 1996] which models the online
prediction problem with a two-player repeated game. The
first player is the learner and the second is the environ-
ment. The leaner can choose a mixed strategy P that de-
termines how to classify the instances determined by the
mixed Strategy Q of the environment. The mixed strategy
P, determines the weight of each concept to be used in the
weighted majority method of classifying instances. The
mixed strategy Q determines how to present instances to
the learner. The game is as follows: First, the learner
chooses mixed strategy P that determines how it would
classify the instances, and then the environment chooses
mixed strategy Q that determines how the instances are
presented to the algorithm. In the next step, learner can
observe the loss of using these strategies and so it can
change its mixed strategy in the next iteration by updating
the weights. It has been shown that for sufficient number
of instances, the error of ensemble with the weights de-
termined by (3) is sufficiently close to the best classifier’s
error [Freund and Schapire, 1996]. So if the size of the
batch is large enough, the performance of our ensemble
classifier on the current batch is close to the performance
of the best classifier in the pool. But this size should not
be so large that it violates the I.I.D condition in the batch
or makes difficulty in storing data in the memory.

Although using this method is guaranteed to work well,
we slightly modify the method to improve its efficiency.
First, Instead of using weighted majority to classify an
instance we use only the classifier with the highest
weight. Second, Instead of applying the updating rule for
every instance, we use it for a subsample of the batch that
has the size equal to square root size of the batch.

The initial values of weights are 1 and after processing
each batch, the weights are set according to the rule dis-
cussed in phase 3. The pseudocode of this method is

shown in Procedure 3. In line 1, St is a subsample of the
batch Bt and m is its size which is set to the square root
size of the batch. After classifying each instance in line 4,
if the instance is a member of the subsample, classifiers’
weights will be updated.

St=sub_sample(Bt,m);
/* makes a sub_sample of size m*/
for i=1 to k do
 pl[Bt,i] = classifyw(Pool,W,Bt,i);
 /*Uses the most weighted classifier*/
 if St does not contains Bt,i
 continue;
 end if
 for j=1 to size(Pool) do
 Wj=Wj* Pool[j].error(Bt,i,Lt,i);
 end for
end for

1
2
3
4
5
6
7
8
9

10
11
12

Procedure 3. Classify batch according to classifier weights.

3.2 Phase 2: Updating the Classifiers’ Pool
After receiving Lt, the true labels of Bt, a classifier in the
pool will be updated incrementally or a new classifier will
be created on the batch. If we assume the size of the batch
is small enough, it will be relevant to only one of the
available concepts, because the concepts in the pool
represent different hypotheses. So the relevant concept
should be updated using the current batch of data. So we
need to find the concept which describes Bt and Lt with the
highest probability and also find a measure of its corres-
pondence to the batch. In the following two subsections,
two alternatives of performing this task are discussed. The
first is a straightforward method and uses Bayes’ theorem
to find the probabilities. The second is a heuristic method
which is more efficient than the first.

Bayesian method for Updating the Classifiers’ Pool
In this method, we estimate the relevance probability of

each available concept to Bt and Lt. As previously men-
tioned, in the environments subject to concept drift, the
I.I.D condition does not hold. But we can assume that this
condition holds for a batch of data that is sufficiently
small. So the probability that Bt and Lt correspond to con-
cept hi can be formulated as:

��ℎ�|AB , CB	 = ��AB , CB|ℎ�	 ∗ ��ℎ�	
��AB , CB	 ,

(4)

where the right side of the equation follows from
Bayes’ theorem. Thus the best concept to describe Bt and
Lt is: +2D%+E���ℎ�|AB , CB	 = +2D%+E� ��AB , CB|ℎ�	 ∗ ��ℎ�	.

(5)

Equation (5) uses the fact that the best concept does not
relate to the probability of Bt and Lt. As the environment is
non-stationary and we cannot have any assumption about
the concepts, we consider P(hi) which is the prior proba-
bility of the i th concept to be identical for all concepts. So
equation (5) becomes:

 +2D%+E���ℎ�|AB , CB	 = +2D%+E� ��AB , CB|ℎ�	 = +2D%+E���AB|ℎ�	 ∗ ��CB|AB , ℎ�	.

(6)

Hence we should estimate P(Lt|Bt,hi) and P(Bt|hi). The
former is the conditional probability that the labels of the

instances (xt,1,xt,2,…,xt,k) be (l t,1,lt,2,…,lt,k) given that the
instances and their labels are described by the i th concept
and the latter is the probability that the batch is produced
in an environment described by the i th concept.

According to I.I.D condition in a batch, we have:

��CB|AB , ℎ�	 = F ��,B,��EB,� , ℎ��.
�G�

�G�

(7)

Notice that P(lt,j|xt,j,hi) can be estimated using the post-
erior probability calculated by the i th classifier. To esti-
mate P(Bt|hi), according to I.I.D we have:

��AB|ℎ�	 = F ��EB,��ℎ��.
�G�

�G�

(8)

There is a straightforward way to determine P(xt,j|hi) by
using a classifier which we call raw data classifier. The
input of this classifier is the unlabeled instances xt,j and its
output is the probability of the instances to belong to the
concepts. So to train the raw data classifier, first the con-
cept which describes Bt and Lt best, is determined. Then
all instances in the batch and the concept index (or its id)
as the class label are given to the classifier to be updated.
To determine the relevant concept of the batch, we can
give all of the batch instances to the classifier. But this
will take much time to find P(Bt|hi) and therefore we use
an alternate way: instead of using all instances in the
batch we make an instance Xt for the batch Bt and use it to
train raw data classifier (RDC). Xt has the same number of
features as the original instances and its i th feature is simp-
ly the sum of all the i th features of the instances in the
batch.

After receiving unlabeled batch Bt, Xt is built and the
probability of each of its instances to belong to any of the
concepts in the pool is estimated by the probability of Xt
to belong to the concept which can be calculated by RDC.
Then the best concept matching Bt and Lt is determined (it
may be a new concept added to the pool) and Xt and the
best concept index are given to RDC to be updated. So
P(Bt|hi) can be estimated as: ��AB|ℎ�	 = H� �, (9)

where pi is the probability of belonging Xt to i th concept
which is calculated by RDC. Therefore, to determine the
best concept describing Bt and Lt we can use:

 +2D%+E���ℎ�|AB , CB	

 = +2D%+E� H�� ∗ F ��,B,��EB,� , ℎ��.
�G�

�G�

(10)

To prevent underflow of the products we use (11) In-
stead of (10) to find the best concept:

 +2D%+E���ℎ�|AB , CB	

= +2D%+E� I ∗ ,*D H� + K ,*D ��,B,��EB,�, ℎ��
�G�

�G�
.

(11)

If the pool is not full and the result of the expression
computed in (11) is less than a parameter θ1, a new clas-
sifier will be added.

Using this method, we must find the posterior probabil-
ity of k instances for finding the best concept and this will
take much time. To resolve this problem, relying on the
fact that the instances in the batch are I.I.D, only a sub-

sample of the square root size of the batch is used to esti-
mate the best concept. The pseudocode of this method is
shown in Procedure 4. In line 2, St contains a subsample
of the batch Bt and m is its size which is set to the square
root size of the batch. SLt stores the labels of St. Lines 5 to
7 find the best describing classifier of the batch according
to Bayesian method. The variable bestC refers to the best
classifier and maxA indicates the result of the expression
computed in (11) for bestC.

Xt = sum_data (Bt);
St = sub_sample (Bt,m);
SLt = sub_sample (Lt,m);
/* stores the labels of the St*/
(maxA , bestC) = (max,argmax)j:1..size(Pool)

(m* log (RDC.prob(xt,j)) +
Σ i=1:m log (Pool[j].prob(Si,SLi)));
if (maxA>θ1 or size(Pool)>maxC)
 Pool[bestC].update(Bt,Lt);
else
 C = make_classifier(Bt,Lt);
 Pool = Pool U {C};
 bestC = size(Pool);
end if
RDC.update(xt,bestC);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Procedure 4. Bayesian method for updating classifiers’ pool.

Heuristic method for Updating the Classifiers’ Pool
To find the best concept describing Bt and Lt, the accu-

racy of all classifiers on Bt will be measured. If the pool is
full and a new classifier cannot be added, the best classifi-
er is updated with Bt and Lt. But if the pool is not full and
the accuracy of the best classifier for this batch of data is
more than a parameter θ2, then the best existing classifier
is updated by Bt and Lt. Otherwise if the accuracy of clas-
sifier is less than θ2, a new classifier is created and trained
on this batch. The reason of using this approach is that the
more the accuracy of a classifier on the current batch is,
the more relevance it may have to the batch. Therefore,
the concept this classifier describes can be refined or ex-
tended using the current batch of data. The pseudocode of
this method is shown in Procedure 5. Lines 4 and 5 find
the best classifier describing the batch according to heu-
ristic method. The variable bestC refers to the best clas-
sifier and maxA indicates the accuracy of that classifier on
the current batch.

St = sub_sample (Bt,m);
SLt = sub_sample (Lt,m);
/* stores the labels of the St*/
(maxA , bestC) = (max,argmax)j:1..size(Pool)

(pool[j].accuracy(St,SLt));
if (maxA>theta or size(Pool)>maxC)
 Pool[bestC].update(Bt,Lt);
else
 C = make_classifier(Bt,Lt);
 Pool = Pool U {C};
 bestC = size(Pool);
end if

1
2
3
4
5
6
7
8
9

10
11
12

Procedure 5. Heuristic method to update classifiers’ pool.

3.3 Phase 3: determining the active classfier (or
classfier weithts)

After phases 1 and 2 are done, some final operations
should be done before moving to the next iteration. If
phase 1 is done according to the active classifier, the ac-

tive classifier should be set. Active classifier is the one
that has been updated with the current batch of data, i.e.
the bestC parameter of our algorithm.

If phase 1 is done in the second way, the weights
should be initialized for the next iteration. The weights of
the classifiers in the pool are set so that in the next itera-
tion, the performance of the method will be high. Each
classifier is tested on a subsample of the square root size
of the batch and its weight is set by:

:L� 	 = =��M�N		, (12)

Where A(i) is the accuracy of the i th classifier. A clas-
sifier which classifies the current batch poorly, will have a
less initial weight. Some kind of locality assumption is
used in (12) for setting the initial weights which does not
work properly when a sudden concept drift occurs. Phase
1 tries to handle this problem by updating the weights
while processing the batch. The pseudocode of this me-
thod is shown in Procedure 6.

St = sub_sample (Bt,m);
SLt = sub_sample (Lt,m);
for j=1 to size(Pool) do
 c_error= Pool[j].error(St,SLt);
 Wj= beta^(2^c_error);
end for

1
2
3
4
5
6

Procedure 6. Determine classifier weights.

4 Experimental Results
In this section, we first introduce the data sets containing
recurring concepts which are used in the experiments.
Then we discuss the parameter tuning of our method and
compare it to the parameters of CCP framework. In the
last subsection the proposed methods are compared with
each other and the CCP framework, one of the most prom-
ising frameworks developed in the tracking of recurring
concepts. The experiments show the effectiveness of our
method.

4.1 Data sets
Three real datasets and one artificial dataset are chosen

for the experiments given in this section. The artificial
dataset is moving hyperplanes and contains sudden con-
cept drift. Real datasets are emailing list [Katakis et al.,
2009], spam filtering and sensor data. Emailing list and
spam filtering are high dimensional datasets and sensor
data is a very large real dataset. Emailing list and hyper-
plane datasets contain sudden concept drift and spam filter-
ing and sensor data contain gradual drift.

Emailing List Dataset
 The emailing list (elist) dataset which is used in [Kata-

kis et al., 2009] contains a stream of emails about different
topics shown to the user one after another and are labeled
as interesting or junk. To construct this dataset, the data in
usenet posts [Frank, 2010] which exists in 20 newsgroups
collection is used and three topics are selected. The user is
interested in one or two topics in each concept and so
he/she labels the emails according to his/her interest. The
interests of the user can be changed in time and so this
dataset simulates recurring concepts and concept drift (Ta-
ble 1). The dataset contains 1500 instances with 913
attributes and is divided into 5 time periods with equal
number of instances .

Spam Filtering Dataset

This dataset is obtained from Spam Assassin‡ collec-
tion and contains email messages. The dataset consists of
9324 instances with 500 attributes and represents gradual
concept drift .

Table 1. Emailing List Dataset (elist) [Katakis et al. 2009]

 1-300 300-600 600-900 900-1200 1200-1500

Medicine + - + - +

Space - + - + -

Baseball - + - + -

Hyperplane Dataset
This dataset simulates the problem of predicting class

of a rotating hyper plane. In an n-dimensional space, a
hyper plane decision surface is the equation D�EO	 =:PPO. EO = 0 where :PPO determines the orientation of the sur-
face and EO is an instance in the space. If D�EO	 > 0, EO’s
label is 1, otherwise it is 0. To simulate concept drift, the
orientation of the hyper plane is changed over time. Our
dataset has 8000 instances with 30 real attributes. There is
a concept drift after each 2000 instances. There are only
two concepts which reappear after the first 4000 instances.
This dataset shows the problem of sudden concept drift
and recurring concepts.

Sensor dataset
Sensor dataset is a real dataset which consists of the in-

formation collected from 54 sensors deployed in Intel
Berkeley Research laboratory in a two-month period [Zhu,
2010]. The class label is the sensor ID, so there are 54
classes, 5 attributes and 2,219,803 instances. The type and
place of concept drift is not specified in the dataset but it is
obvious that there are some drifts. For example, lighting or
the temperature of some specific sensors during the work-
ing hours is much stronger than nights or weekends

4.2 Parameter Tuning
One of the advantages of the proposed method is that

its parameters can be tuned in a much simpler way com-
pared to the CCP framework method and small changes of
parameter values, do not lead to major variations in per-
formance. On the other hand, the CCP framework method
has a θ parameter which is somehow similar to our θ1 and
θ2 parameters. If this parameter is set wrongly in CCP
framework method, the accuracy of the classification will
decrease significantly. For example, θ should be 4 for elist
and 2.5 for spam filtering dataset. If we set θ to 2.5 instead
of 4 for elist dataset, its accuracy will be 55% rather than
77%.

If weighted classification method is used in phase 1, a
parameter β is required to update the weights which is by
definition in [0,1). The more sudden the concept drift is,
the smaller the parameter should be. We have set this pa-
rameter to 0.1 for all datasets. Another parameter is the
maximum classifier number (maxC) which is set to 10 and
implies that we expect to have at most 10 different con-
cepts. In addition, we have a parameter θ1 in the heuristic
method which is a threshold for the accuracy of the best
classifier. So the more the maxC parameter is and the less
sudden the concept drift is, the higher θ1 should be. We
have set this parameter to 0.95 for all datasets which

‡ The Apache SpamAssasin Project -
http://spamassassin.apache.org/

means that only when a classifier has the accuracy more
than 0.95 on a batch, it will describe the concept of the
batch correctly. For the other parameter, θ2, in the Baye-
sian method, we have set it to 2 ∗ log�0.75	 ∗ %, accord-
ing to its definition. This is because we believe if each of
the 2m probabilities of (11) is at least 0.75, then the con-
cept can be relevant to the batch and its labels. The batch
size is set to 50 for elist and spam filtering datasets and
500 for hyperplane dataset.

As a result, parameter tuning for our method is simpler
than CCP framework method and the same parameters
work well for all datasets with different natures we have
chosen. The only parameter that does not have the same
value for all datasets in our experiments is the batch size.
This problem also exists in the CCP Framework method
and must be resolved according to the properties of the
dataset.

The reason behind our claim that our parameter setting
is simple is that most of these parameters can be expressed
as some property of the datasets, but setting the parameters
correctly needs some knowledge about the dataset.

4.3 Results and Discussion
We compared our method with the CCP Framework

method [Katakis et al., 2009] in terms of accuracy, preci-
sion, recall and running time. We have discussed how to
tune our method’s parameters in the previous subsection.
The results of our experiments on elist, spam filtering,
hyperplane and sensor datasets are shown in tables 2, 3, 4
and 5, respectively.

comparison of methods’ accuracies, precisions and
recalls

The results for elist and hyperplane datasets that simu-
late sudden concept drift are much better when using the
weighted classifiers method rather than active classifier
method. The difference of about 8% in the accuracies can
be seen. We have tested the weighted classifiers method in
conjunction with the CCP framework method and the same
result can be seen in terms of increase in the accuracy. This
is reasonable, because when a sudden concept drift occurs,
the active classifier which is appropriate for the last batch
works poorly in classifying the current batch. When the
weighted classifiers method is used, after receiving the
first few instances of the batch, the classifier’ weights are
adapted so that the concept drift is taken into account and
the classification task will have a higher accuracy.

As a comparison, our weighted classifiers method out-
performs the CCP framework method for sudden concept
drift and has similar results for gradual concept drift. Our
batch assignment methods (Bayesian and heuristic) have
results similar to the CCP framework method without hav-
ing parameter setting problems discussed previously.

In sensor dataset, CCP and Bayesian batch assignment
methods have lower performances (between 9% and 15%
of accuracy) than Heuristic method. This means that CCP
framework and Bayesian method have some problems in
determining the true concept of a batch in sensor dataset.
One problem with CCP framework method is that it uses
the Euclidean distance as the measure of similarity of a
batch to a concept. ConDis, the distance measure used in
CCP, is dependent on the magnitude of the attribute values
and an attribute with large values can reduce the effects of
the other attributes in the distance calculation. The prob-
lem of Bayesian method could be possibly the I.I.D as-

sumptions made in it. However, Bayesian method still out-
performs than CCP framework method (about 3%).

Table 2. Results of all methods on elist dataset.

Batch
assignment

Method

Classification
Method

Acc. P R
F-

measure
Time

CCP
Active 0.77 0.73 0.81 0.77 1004

Weighted 0.82 0.79 0.83 0.81 1274

Heuristic
Active 0.75 0.71 0.77 0.74 1816

Weighted 0.82 0.8 0.83 0.81 1843

Bayesian
Active 0.75 0.71 0.8 0.75 2089

Weighted 0.82 0.8 0.84 0.82 2462

Table 3. Results of all methods on spam filtering dataset.

Batch
assignment

Method

classification
method

Acc. P R
F-

measure
Time

CCP
Active 0.91 0.91 0.84 0.94 2217

Weighted 0.89 0.92 0.87 0.93 2820

Heuristic
Active 0.89 0.91 0.84 0.93 3942

Weighted 0.89 0.92 0.89 0.93 4112

Bayes
Active 0.89 0.9 0.86 0.93 4537

Weighted 0.88 0.91 0.91 0.92 5405

Table 4. Results of all methods on Hyperplane dataset.

Batch
assignment

Method

classification
method

Acc. P R
F-

measure
Time

CCP
Active 0.76 0.72 0.81 0.78 868

Weighted 0.83 0.81 0.83 0.84 947

Heuristic
Active 0.76 0.73 0.77 0.78 974

Weighted 0.84 0.81 0.83 0.85 970

Bayes
Active 0.78 0.75 0.8 0.8 876

Weighted 0.86 0.83 0.84 0.87 899

Table 5. Results of all methods on sensor dataset.

batch
assignment

classification
method

Accuracy Time

CCP
Active 0.71 370560

Weighted 0.71 813398

Heuristic
Active 0.87 929289

Weighted 0.86 846226

Bayes
Active 0.74 883682

Weighted 0.74 1299652

Comparision of methods’ run times
The run time of each method is shown in the last col-

umn of the result tables (Table 2-5). The most time con-

suming part of these methods is the time spent calling the
training and test methods of the classifiers. In the CCP
framework method additional time is spent on the con-
struction of the conceptual vectors and the clustering task.
In all methods, each instance of the batch is used once to
update a classifier in the pool. The difference is in the
number of times an instance is classified or its posterior
probability distribution is measured by the classifiers.
Simply, assume that T0 is the time taken to classify an in-
stance and T1 is the time taken to find the posterior proba-
bilities for it. In the classification task, each data is classi-
fied only once in all batch assignment methods and so the
only major differences are in updating the classifiers’
weights and in phase 2 where the updating of the classifi-
ers’ pool is done. Suppose that the subsample size of the
batch used in both the heuristic and the Bayesian methods
is m. In the heuristic method, each of the m instances is
classified once using all of the classifiers in the pool and in
the Bayesian method, the posterior probabilities of each of
the m instances are measured by each of the classifiers. In
the Bayesian method, one posterior probabilities estima-
tion and one update by the raw data classifier is also re-
quired for each batch but this can be ignored. So the time
required in the heuristic method is at most % ∗ %+EY ∗ ZL
and in the Bayesian method is at most % ∗ %+EY ∗ Z�. T1
is greater or equal to T0 according to their definitions. So in
general, we expect using the Bayesian method is more
time consuming rather than the heuristic method, because
the maximum time computed for Bayesian method is
greater. This can be seen in tables 2 and 3, but not in the
last dataset, because in this problem setting only two clas-
sifiers are added to the pool for the Bayesian method
(among 10 possible classifiers).

In addition, we use a subsample of the batch to update
the weights in the weighted classifiers method. Each of the
instances in this subsample is classified by each of the
classifiers in the pool to find the classifiers’ errors. So if
we use the same subsample of the batch for both updating
the classifiers and their weights, we will obtain a time sav-
ing when using Heuristic and weighted classifiers me-
thods. Therefore for each of batch assignment methods,
using weighted classifiers method will consume more time
than using active classifier. This can be seen in tables 2 to
4 for our three datasets, except in the Heuristic method
because of the time saving we mentioned.

At last, Bayesian method takes the most time among all
batch assignment methods while Heuristic and CCP me-
thods take almost the same time using active classifier and
Heuristic method is better when using weighted classifiers.

5 Conclusion and Future Works
We have proposed a method with some variations for

streaming data classification in the presence of concept
drift and recurring concepts. The general framework used
in this paper maintains a pool of classifiers and updates
them according to consecutive batches of data. The clas-
sifiers in the pool are used to classify new batches of data.
The most similar method to our method is the CCP frame-
work. Our method improves the accuracy while its para-
meter tuning is simpler.

Some future research works related to this study might
include the followings. First, managing the classifiers in
the pool can be done more complexly. For example, clas-
sifiers can be merged or removed to handle more compli-
cated situations. Second, parameters of the algorithm are

dependent on the datasets. If they can be set dynamically
according to the datasets, the algorithm will work properly
for all datasets. Third, the algorithm should be run on
more real datasets in order to achieve more reliable re-
sults.

References

 [Baena-García et al., 2006] Manuel Baena-García, José del

Campo-Ávila, Raul Fidalgo, Albert Bifet, Ricard Gavaldà and
Rafael Morales-Bueno, Early Drift Detection Method, in
ECML PKDD Workshop on Knowledge Discovery from Data
Streams. 2006.

[Bifet, 2009] Albert Bifet, Adaptive Learning and Mining for
Data Streams and Frequent Patterns, in Departament de Llen-
guatges i Sistemes Informatics. 2009, Universitat Politecnica
de Catalunya.

[Bifet et al., 2010a] Albert Bifet, Eibe Frank, Geoffrey Holmes,
Bernhard Pfahringer, Accurate ensembles for data streams:
Combining restricted Hoeffding trees using stacking. in 2nd
Asian Conference on Machine Learning. 2010. Tokyo, Japan:
JMLR.

[Bifet et al., 2010b] Albert Bifet, A., Geoff Holmes, Richard
Kirkby, Bernhard Pfahringer, MOA: Massive Online Analy-
sis. Journal of Machine Learning Research. 2010, 99: pp.
1601-1604.

 [Frank, 2010] Frank, A., UCI Machine Learning Repository.
2010. accessed on May 2011; Available from:
http://archive.ics.uci.edu/ml.

 [Freund and Schapire, 1996] Yoav Freund, and Robert .E.
Schapire. Game theory, on-line prediction and boosting. in
Proceedings of the ninth annual conference on Computational
learning theory. 1996: ACM.

 [Gama and Castillo, 2006] Joa Gama and Gladys Castillo,
Learning with local drift detection, in Advanced Data Mining
and Applications, Proceedings, X. Li, O.R. Zaiane, and Z.H.
Li, Editors. 2006, pp. 42-55.

[Gama and Kosina, 2009] Joa Gama and Petro Kosina, Tracking
Recurring Concepts with Meta-learners, in Proceedings of the
14th Portuguese Conference on Artificial Intelligence:
Progress in Artificial Intelligence. 2009.

 [Gao et al., 2008] Jing Gao, Bolin Ding, Wei Fan, Jiawei Han,
Classifying Data Streams with Skewed Class Distributions
and Concept Drifts. IEEE Internet Computing, 2008. 12(6):
pp. 37-49.

[Garnett, 2010] Roman Garnett, Learning from Data Streams
with Concept Drift, in Department of Engineering Science.
2010, University of Oxford. pp. 163.

[Gomes et al., 2011] Joao B. Gomes, Ernestina Menasalvas, and
Pedro A.C. Sousa, Learning recurring concepts from data
streams with a context-aware ensemble, in Proceedings of the
2011 ACM Symposium on Applied Computing, 2011, pp.
994-999.

 [Helmbold and Long, 1994] David P. Helmbold and P. M.
Long, Tracking Drifting Concepts by Minimizing Disagree-
ments. Machine Learning, 1994, 14, pp.27-45.

 [Ikonomovska et al., 2010] Elena Ikonomovska, Joa Gama, and
S. Deroski, Learning model trees from evolving data streams.
Data Mining and Knowledge Discovery, 2010. 23(1): pp. 128-
168.

[Katakis et al., 2009] Ioannis Katakis, Grigorios Tsoumakas, and
Ioannis Vlahavas, Tracking recurring contexts using ensemble
classifiers: an application to email filtering. Knowledge and
Information Systems, 2009. 22(3): pp. 371-391.

[Klinkenberg and Joachims, 2000] Ralf Klinkenberg and Thors-
ten Joachims, Detecting Concept Drift with Support Vector
Machines. In the Proceedings of the Seventeenth International
Conference on Machine Learning (ICML), 2000, pp.487-494.

 [Klinkenberg, 2004] Ralf Klinkenberg. Learning Drifting Con-
cepts:Example Selection vs. Example Weighting. Intelligent
Data Analysis, Special Issue on Incremental Learning Sys-
tems Capable of Dealing with Concept Drift, 2004, 8(3),
pp.281-300.

 [Kolter and Maloof, 2007] J. Zico Kolter and Marcus A. Ma-
loof, Dynamic weighted majority: An ensemble method for
drifting concepts. Journal of Machine Learning Research,
2007. 8: pp. 2755-2790.

[Kuh et al., 1991] A. Kuh, T. Petsche and H. Rivest, Learning
Time-Varying Concepts. In
Advances in Neural Information Processing Systems (NIPS),
1991, pp.183-189.

 [Kuncheva and Zliobaite, 2009] Ludmila I. Kuncheva and Indre
Zliobaite, On the window size for classification in changing
environments. Intell. Data Anal., 2009. 13(6): pp. 861-872.

[Lazarescu, 2005] Mihai M. Lazarescu, A Multi-Resolution
Learning Approach to Tracking Concept Drift and Recurrent
Concepts, in 5th IAPR Workshop on Pattern Recognition in
Information Systems (PRIS). 2005: Miami, USA. pp. 52-61.

[Morshedlou and Barforoush, 2009] Hossein Morshedlou, and
Ahmad A. Barforoush, A New History Based Method to Han-
dle the Recurring Concept Shifts in Data Streams. World
Academy of Science, Engineering and Technology, 2009. 58:
pp. 917-922.

[Nishida, 2008] Kyosuke Nishida, Learning and Detecting Con-
cept Drift, in Information Science and Technology. 2008,
Hokkaido University: Hokkaido.

[Ramamurthy and Bhatnagar, 2007] Sasthakumar Ramamurthy
and Raj Bhatnagar. Tracking Recurrent Concept Drift in
Streaming Data Using Ensemble Classifiers. in Proceedings
of the Sixth International Conference on Machine Learning
and Applications (ICMLA '07). 2007. pp. 404-409.

[Scholz and Klinkenberg, 2006] Martin Scholz and Ralf Klin-
kenberg, Boosting Classifiers for Drifting Concepts. Intelli-
gent Data Analysis, Special Issue on Knowledge Discovery
from Data Streams, 2007, 11(1), pp.3-28.

[Schlimmer and Granger, 1986]Jeffrey C Schlimmer and Ri-
chard H Granger Jr, Incremental learning from noisy data.
Machine learning,1986, 1(3), pp. 317-354.

[Widmer and Kubat, 1993] Gerhard Widmer and Miroslav Ku-
bat, Effective learning in dynamic environments by explicit
context tracking. in Proceedings of the European Conference
on Machine Learning, 1993, pp.227-243.

[Widmer and Kubat, 1996] Gerhard Widmer and Miroslav Ku-
bat, Learning in the Presence
of Concept Drift. Machine Learning, 1996, 23, pp.69-101.

 [Witten et al., 2005] Ian H. Witten, Eibe Frank, Mark A. Hall,
Data Mining: Practical machine learning tools and techniques.
2005: Morgan Kaufmann.

[Tsymbal, 2004] Alexey Tsymbal, The Problem of Concept
Drift: Definitions and Related Work. 2004.

[Zliobaite, 2010a] Indre Zliobaite, Learning under Concept
Drift: an Overview. 2010.

[Zliobaite, 2010b] Indre Zliobaite, Adaptive Training Set Forma-
tion. 2010, Vilnius University.

[Zhu, 2010]Xingquan Zhu, Stream Data Mining reposito-
ry.2010. Accessed on Jan 2012; Available from:
http://www.cse.fau.edu/~xqzhu/stream.html

