
Abstract 
Data streams have some unique properties which 
make them applicable in precise modeling of 
many real data mining applications. The most 
challenging property of data streams is the occur-
rence of “concept drift”. Recurring concepts is a 
type of concept drift which can be seen in most 
of real world problems. Detecting recurring con-
cepts makes it possible to exploit previous know-
ledge obtained in the learning process. This leads 
to quick adaptation of the learner whenever a 
concept reappears. In this paper, we propose a 
learning algorithm called Pool and Accuracy 
based Stream Classification (PASC), which takes 
the advantage of maintaining a pool of classifiers 
to track recurring concepts. Each classifier is 
used to describe an existing concept. Two me-
thods are presented for classification task: active 
classifier and weighted classifiers methods. For 
the updating of the pool we use two methods: 
Bayesian and Heuristic. Experimental results on 
real and artificial datasets show the effectiveness 
of weighted classifiers method while dealing 
with sudden concept drifting datasets. In addi-
tion, the proposed updating methods outperform 
the existing algorithms in datasets with arbitrary 
attributes. 

1 Introduction 
As the data available on the web increases, processing 

the large volume of data and extracting knowledge from 
them is needed. These data are changing and they cannot 
be saved and processed wholly in the same way as classic-
al data mining assumes. So, presenting new algorithms 
which could learn and classify using this continuous and 
unlimited stream of data is a challenging problem. Data 
streams have some properties [Tsymbal, 2004]:  

- They could not be saved completely and so a for-
getting mechanism is needed to forget ineffective 
data.  

- The processing of data should be done online and 
the algorithm complexity should be simple. 

- Most of the time, feature (or class) distribution is 
changed over the time. This is known as concept 
drift. If the drift takes effect in the target function, 
it is named real concept drift.  

                                                 
† This paper is the resubmission of a paper with the same 
topic published in Evolving Systems 4(1): 43-60 (2013). 
(an earlier version was published ICDM Workshops 2011).  

The concept drift could be sudden, gradual, incremen-
tal or recurring [Zliobaite, 2010a]. When the underlying 
distribution of data changes suddenly at time tk, sudden 
drift occurs. Gradual drift happens when in a period of 
time, the data is drawn from two distributions and over 
time, the probability of the old distribution decreases and 
the probability of the new distribution increases. Incremen-
tal drift can be thought of as a generalized version of gra-
dual drift. Here in the drift period, there could be more 
than two distributions to draw data from. However the 
difference between the distributions should be small. The 
other type of drift is recurring concept, where previously 
seen concepts reappear after some time. One important 
challenge in learning from data streams in the presence of 
concept drift is distinguishing the drift from the noise. It is 
important to note that I.I.D (Independent Identically Dis-
tribution) condition is not valid in the streams in which 
concept drift occurs, but it is rational to think that small 
size batches of data satisfy the I.I.D condition.  
There have been extensive studies on sudden and gradual 
concept drift detection and learning [Baena-García et al., 
2006; Gama and Castillo, 2006; Helmbold and Long, 
1994; Klinkenberg and Joachims, 2000; Klinkenberg, 
2004; Kolter and Maloof, 2007; Kuh et al., 1991; Gao et 
al., 2008; Nishida, 2008; Bifet et al., 2010a; Bifet et al., 
2010b; Kuncheva and Zliobaite, 2009; Garnett, 2010; 
Ikonomovska et al., 2010; Scholz and Klinkenberg, 2006; 
Zliobaite, 2010b]. Early systems in data stream support 
recurring concepts [Schlimmer and Granger, 1986; Wid-
mer and Kubat, 1993; Widmer and Kubat, 1996], howev-
er, they are mostly considered recently [Lazarescu, 2005; 
Gama and Kosina, 2009; Katakis et al., 2009; Morshedlou 
and Barforoush, 2009; Gomes et al., 2010], and identified 
as a challenging problem in data streams. 

In this paper we propose a learning algorithm which 
tries to improve classifying concept drifting data streams 
by exploiting the existence of recurring concepts. This is 
done by maintaining a pool of classifiers which is updated 
continuously while processing consecutive batches of data 
(same as previous approaches, e.g. [Gomes et al., 2011; 
Katakis et al., 2009; Ramamurthy and Bhatnagar, 2007]). 
Each classifier of this pool is used to describe one of the 
existing concepts. When a new batch of data is received, 
first it is classified and after receiving the true labels of 
instances, it is used to update an existing classifier in the 
pool or add a new classifier to it. Deciding which classifier 
should be updated or whether a new one is needed is done 
by some examinations on the new batch of data and the 
pool. Classification of the instances is done by using the 
classifiers in the pool in an effective and adaptive way. 
This algorithm is similar to the one used in [Katakis et al., 
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2009], but there are major changes in the steps of the algo-
rithm. In fact, our contribution is to propose a new method 
to classify instances called weighted classifiers method. 
The other novel part of the paper is the presentation of new 
methods to update the pool using Bayesian formulation 
and a heuristic method. Finally the presented methods are 
compared with the existing ones. 

The results show the effectiveness of our algorithm in 
terms of accuracy and time especially in data streams of 
sudden drifts. In addition, it is tried to solve some parame-
ter setting problems that exist in some of the previous me-
thods. 
The structure of this paper is as follows: in the next sec-
tion the related works of recurring concepts is discussed. 
In section 3 the proposed algorithm is presented. Section 4 
evaluates the proposed algorithm and compares the expe-
rimental results to some previous methods. Section 5 con-
cludes the paper and discusses some future developments 
which can be done. 

2 Related Work 
Concept drift learning of data streams has been studied 

extensively in recent decades. As discussed previously, 
drifts can be of different types. Most of studies are done 
on the learning of sudden and gradual drifts. But one poss-
ible drift is the change of the current concept to one of the 
previously seen concepts. As in data streams the learner 
forgets some unused concepts passing the time, if in-
stances from a previously seen concept is presented to the 
learner, it may classify them incorrectly. So the learner 
may be fallen into the trap. Recurring concepts detection 
and learning is a hard and challenging problem which has 
been studied in recent years [Lazarescu, 2005; Gama and 
Kosina, 2009; Katakis et al., 2009; Morshedlou and Bar-
foroush, 2009; Gomes et al., 2011]. All of presented me-
thods try to extract concept from received instances and 
maintain the concept in a pool of concepts. Every time a 
new instance arrives, the similarity to available concepts 
is measured and a model is selected or created. The rest of 
this section reviews the researches done in the area of 
recurring concepts in data streams.  

The first algorithm supporting recurring concepts con-
sists of an ensemble of classifiers [Ramamurthy and 
Bhatnagar, 2007]. Each classifier is built on a data chunk 
and none of the classifiers are deleted. Then while choos-
ing classifiers for the ensemble, the algorithm selects only 
pertinent classifiers and so it supports the recurring con-
cepts.  

Reference [Katakis et al., 2009] presents a framework 
for the problem of recurring concepts. It extracts a con-
ceptual vector from the arrived batch of data using a trans-
formation function. We name the instances of a labeled 

batch as  B� = �����	, ������	, … , ��������	�, (1) 

where ������	 is the (i+1) th instance of the labeled batch 
of data. A conceptual vector � = ���, ��, … , ��	 is ex-
tracted from the batch where �� is a conceptual feature and 
is calculated from  

 

�� = ������ = �����:  = 1. . #, $ = 1. . %, � ∈ '��    � ��  ) #*% #+,  
�-�,� , .�,� ∶ $ = 1. . %�                                       � ��  ) #0%12 � 3, (2) 

 
where �� is the i th feature, '� is the set of possible values 

of a nominal feature, -�,�  and .�,� are the mean and stan-
dard deviation of the j th class of feature i. Then by using a 

clustering algorithm on the available concepts, the algo-
rithm detects the recurring concepts. For each concept in 
the pool, the algorithm preserves a classifier which will be 
updated through the time. Clustering is done on the con-
ceptual vectors and using the Euclidean distance as the 
similarity (difference) measure. If the similarity of a new 
conceptual vector is more than a threshold, an available 
concept and its classifier will be updated otherwise a new 
cluster and classifier will be created. One major problem 
of this framework is how to determine the threshold. The 
threshold value is a problem specific parameter and 
should be regularized by try and error.  

Mean and standard deviation is used for the presenta-
tion of models in [Morshedlou and Barforoush, 2009] too. 
This approach uses a proactive behavior versus drifts: by 
knowing the current concept, it calculates the probability 
of next concept. If the probability is more than a thre-
shold, the concept will be added to the buffer. If the algo-
rithm detects a drift and decides to behave proactively, it 
selects a concept from the buffer. If the concept matches 
the batch, it will be updated. If the concept does not match 
the data and the algorithm behaves proactively, the next 
concept will be selected else if the reactive behavior is 
selected, a new classifier will be trained on the batch. 
[Morshedlou and Barforoush, 2009] uses a heuristic ap-
proach to select proactive or reactive action. Here a thre-
shold parameter should be selected as well as doing some 
computations to select the suitable behavior each time 
which is a time consuming action. 

The other approach uses meta-learners which can detect 
the reoccurrence of concepts and activate the previous 
classifiers using proactive behaviors [Gama and Kosina, 
2009]. The meta-learner learns the space where the base 
learner does well. When the algorithm enters the warning 
phase of drift, meta-learners determine the performance of 
their corresponding base learners. If the performance is 
more than a threshold, the algorithm will use the base 
learner to classify next instances. Here all base learners 
and their corresponding meta-learners (referees) are main-
tained in the pool. 

Another idea used in this domain is the use of context 
space model to extract concept from learning model 
[Gomes et al., 2010]. A context space is a N-tuple of the 
form 7 = �+�8 , +�8 , … , +98 	, where +�8determines the ac-
ceptable regions of feature ai. Each classifier has a context 
space description and all of them will be saved in a reposi-
tory. To select the appropriate model, the algorithm uses 
their corresponding contexts. 

3 Proposed Learning Algorithm  
Our goal is to propose a new method named Pool and 

accuracy based Stream Classification (PASC). The idea 
followed in this method is similar to the method proposed 
in [Katakis et al., 2009]. We maintain a pool of classifiers 
which contains a number of classifiers each describing a 
particular concept which is being updated through the 
time. After receiving a batch of data, first we predict the 
labels of its instances and then receive the true labels. 
Then we can use the instances and their labels to update a 
classifier in the pool or create a new classifier on this 
batch of data and add it to the pool, if necessary. The clas-
sifiers added to the pool cannot grow arbitrarily the max-
imum number of classifiers in the pool cannot exceed a 
predefined limit which is a parameter of our algorithm. 



To update or create a classifier in the pool, first of all 
the most relevant concept to the batch of labeled data is 
selected. If the similarity is more than a predefined thre-
shold or the pool is full, we update the most relevant clas-
sifier with the newly arrived labeled batch. Otherwise we 
construct a new classifier on it. The classifiers used in our 
method can be any kind of updateable classifiers. 

In the rest of this section, we seek how to classify the 
batches of data and update the pool. As mentioned above, 
after receiving each batch of data, the classification is 
done and after receiving their labels, we update the pool. 
In the proposed method, iteratively after receiving the tth 
batch of unlabeled data Bt = (xt,1,xt,2,…,xt,k) such that xt,i is 
the i th data of the tth batch, and its labels Lt=(l t,1,lt,2,…,lt,k) 
such that l t,i is the label of xt,i, we follow the general 
framework shown in Procedure 1. 

 

Input : an infinite stream of batches of instances 
Bt. 
After classification of each instance Bt,i, 
its label is revealed to the algorithm. 

Output: Predicted labels of instances Bt,i. 

 

Pool = Ø; // the pool of classifiers 
C = make_classifier(B1,L1); 
RDC = new classifier(); //only used in Bayesian 
//method 
ac = 1; // active classifier 
W1=1; 
Pool = Pool U {C}; 
X1=sum_data(B1); 
RDC.update(X1,1); //1 is the label of X1 
for  j=2 to infinity do 
     Classify Bt. 
     Update Pool with Bt and Lt; 
     determine active classifier (classifier weights); 
end for 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14  

Procedure 1. The main framework of PASC. 

In line 2, C is the first classifier which will be added to 
the pool and W1 (in line 6) is its weight. RDC is a classifi-
er and ac contains the active classifier which will be used 
in the rest of the procedure. In line 8, X1 is an instance 
constructed from B1. This procedure contains three main 
phases which can be seen in lines 11 to 13. 

In the following subsections, we consider the details of 
the parameters discussed above and the three phases of the 
algorithm. 

3.1 Phase 1: Classifying the Batch 
In this phase, after receiving a batch of unlabeled data 

Bt, we classify the batch using the classifiers in the pool. 
This task can be done in two ways. The first is similar to 
the method used in [Katakis et al., 2009] and the second 
tries to classify the batch using the weights assigned to the 
classifiers. 

Classifying the Batch According to the Active Classifi-
er 

method is used in [Katakis et al., 2009] to classify in-
stances using the classifiers in the pool. The classifier 
selected to classify the batch is named active classifier. 
This classifier is defined according to the last iteration. If 
in the last iteration, a new classifier was added to the pool, 
it would be the active classifier. Otherwise, the classifier 
that has the most relevance to the batch would be the ac-
tive classifier. The pseudocode of this method is shown in 

Procedure 2. In line 2, ac is the active classifier and pl 
stores the predicted labels of the instances. 

 

for  i=1 to k do 
     pl[Bt,i] = Pool[ac].classify(Bt,i);  
end for 

1 
2 
3  

Procedure 2. Classify batch according to active classifier. 

Classifying the Batch According to the classifiers’ 
weights. 

The first way of classifying a batch uses the active clas-
sifier that is appropriate for the last batch of data. Howev-
er, when a sudden concept drift occurs, the method’s per-
formance decreases significantly, because the appropriate 
classifier for the last batch is not appropriate for the cur-
rent batch anymore. We suggest using the classifiers in 
the pool in an adaptive way. A positive weight is assigned 
to each classifier in the beginning of processing the batch 
according to the performance of the classifier on the pre-
vious batch and when we want to classify an instance, we 
use the classifier with the highest weight. When the true 
label is revealed to the algorithm, the classifiers’ weights 
can be updated. Updating the weights is done according to 
the following rule:  :;�$	 = :�$	 ∗ =>��,�	, (3) 

where w(j) is the current weight of j th classifier and 
w’(j)  is its new weight and β is a parameter in [0,1). If the 
j th classifier classifies the i th instance correctly, M(j,i) will 
be 0, otherwise it is 1. Equation (1) is inspired from 
[Freund and Schapire, 1996] which models the online 
prediction problem with a two-player repeated game. The 
first player is the learner and the second is the environ-
ment. The leaner can choose a mixed strategy P that de-
termines how to classify the instances determined by the 
mixed Strategy Q of the environment. The mixed strategy 
P, determines the weight of each concept to be used in the 
weighted majority method of classifying instances. The 
mixed strategy Q determines how to present instances to 
the learner. The game is as follows: First, the learner 
chooses mixed strategy P that determines how it would 
classify the instances, and then the environment chooses 
mixed strategy Q that determines how the instances are 
presented to the algorithm. In the next step, learner can 
observe the loss of using these strategies and so it can 
change its mixed strategy in the next iteration by updating 
the weights. It has been shown that for sufficient number 
of instances, the error of ensemble with the weights de-
termined by (3) is sufficiently close to the best classifier’s 
error [Freund and Schapire, 1996]. So if the size of the 
batch is large enough, the performance of our ensemble 
classifier on the current batch is close to the performance 
of the best classifier in the pool. But this size should not 
be so large that it violates the I.I.D condition in the batch 
or makes difficulty in storing data in the memory. 

Although using this method is guaranteed to work well, 
we slightly modify the method to improve its efficiency. 
First, Instead of using weighted majority to classify an 
instance we use only the classifier with the highest 
weight. Second, Instead of applying the updating rule for 
every instance, we use it for a subsample of the batch that 
has the size equal to square root size of the batch.  

The initial values of weights are 1 and after processing 
each batch, the weights are set according to the rule dis-
cussed in phase 3. The pseudocode of this method is 



shown in Procedure 3. In line 1, St is a subsample of the 
batch Bt and m is its size which is set to the square root 
size of the batch. After classifying each instance in line 4, 
if the instance is a member of the subsample, classifiers’ 
weights will be updated. 

 

St=sub_sample(Bt,m); 
/* makes a sub_sample of size m*/ 
for  i=1 to k do 
     pl[Bt,i] = classifyw(Pool,W,Bt,i); 
     /*Uses the most weighted classifier*/ 
     if St does not contains Bt,i 
          continue; 
     end if 
     for j=1 to size(Pool) do 
          Wj=Wj* Pool[j].error(Bt,i,Lt,i); 
     end for 
end for 

1 
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3 
4 
5 
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7 
8 
9 

10 
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Procedure 3. Classify batch according to classifier weights. 

3.2 Phase 2: Updating the Classifiers’ Pool 
After receiving Lt, the true labels of Bt, a classifier in the 
pool will be updated incrementally or a new classifier will 
be created on the batch. If we assume the size of the batch 
is small enough, it will be relevant to only one of the 
available concepts, because the concepts in the pool 
represent different hypotheses. So the relevant concept 
should be updated using the current batch of data. So we 
need to find the concept which describes Bt and Lt with the 
highest probability and also find a measure of its corres-
pondence to the batch. In the following two subsections, 
two alternatives of performing this task are discussed. The 
first is a straightforward method and uses Bayes’ theorem 
to find the probabilities. The second is a heuristic method 
which is more efficient than the first. 

Bayesian method for Updating the Classifiers’ Pool 
In this method, we estimate the relevance probability of 

each available concept to Bt and Lt. As previously men-
tioned, in the environments subject to concept drift, the 
I.I.D condition does not hold. But we can assume that this 
condition holds for a batch of data that is sufficiently 
small. So the probability that Bt and Lt correspond to con-
cept hi can be formulated as: 

��ℎ�|AB , CB	 = ��AB , CB|ℎ�	 ∗ ��ℎ�	
��AB , CB	 ,  

(4) 
 

where the right side of the equation follows from 
Bayes’ theorem. Thus the best concept to describe Bt and 
Lt is: +2D%+E���ℎ�|AB , CB	 = +2D%+E�  ��AB , CB|ℎ�	 ∗  ��ℎ�	.  

(5) 
 

Equation (5) uses the fact that the best concept does not 
relate to the probability of Bt and Lt. As the environment is 
non-stationary and we cannot have any assumption about 
the concepts, we consider P(hi) which is the prior proba-
bility of the i th concept to be identical for all concepts. So 
equation (5) becomes: 

 +2D%+E���ℎ�|AB , CB	 = +2D%+E�  ��AB , CB|ℎ�	 = +2D%+E���AB|ℎ�	 ∗ ��CB|AB , ℎ�	. 
 
(6) 
 

Hence we should estimate P(Lt|Bt,hi) and P(Bt|hi). The 
former is the conditional probability that the labels of the 

instances (xt,1,xt,2,…,xt,k) be (l t,1,lt,2,…,lt,k) given that the 
instances and their labels are described by the i th concept 
and the latter is the probability that the batch is produced 
in an environment described by the i th concept. 

According to I.I.D condition in a batch, we have: 
 

��CB|AB , ℎ�	 = F ��,B,��EB,� , ℎ��.
�G�

�G�
 

 
(7) 
 

Notice that P(lt,j|xt,j,hi) can be estimated using the post-
erior probability calculated by the i th classifier.  To esti-
mate P(Bt|hi), according to I.I.D we have: 

��AB|ℎ�	 = F ��EB,��ℎ��.
�G�

�G�
 

 
(8) 
 

There is a straightforward way to determine P(xt,j|hi) by  
using a classifier which we call raw data classifier. The 
input of this classifier is the unlabeled instances xt,j and its 
output is the probability of the instances to belong to the 
concepts. So to train the raw data classifier, first the con-
cept which describes Bt and Lt best, is determined. Then 
all instances in the batch and the concept index (or its id) 
as the class label are given to the classifier to be updated. 
To determine the relevant concept of the batch, we can 
give all of the batch instances to the classifier. But this 
will take much time to find P(Bt|hi) and therefore we use 
an alternate way: instead of using all instances in the 
batch we make an instance Xt for the batch Bt and use it to 
train raw data classifier (RDC). Xt has the same number of 
features as the original instances and its i th feature is simp-
ly the sum of all the i th features of the instances in the 
batch.  

After receiving unlabeled batch Bt, Xt is built and the 
probability of each of its instances to belong to any of the 
concepts in the pool is estimated by the probability of Xt 
to belong to the concept which can be calculated by RDC. 
Then the best concept matching Bt and Lt is determined (it 
may be a new concept added to the pool) and Xt and the 
best concept index are given to RDC to be updated. So 
P(Bt|hi) can be estimated as: ��AB|ℎ�	 = H� �, (9) 

 

where pi is the probability of belonging Xt to i th concept 
which is calculated by RDC. Therefore, to determine the 
best concept describing Bt and Lt we can use: 

 +2D%+E���ℎ�|AB , CB	 

 = +2D%+E�  H�� ∗  F ��,B,��EB,� , ℎ��.
�G�

�G�
 

 
(10) 
 

To prevent underflow of the products we use (11) In-
stead of (10) to find the best concept: 

 +2D%+E���ℎ�|AB , CB	 

=  +2D%+E� I ∗ ,*D H� +  K ,*D ��,B,��EB,�, ℎ��
�G�

�G�
. 

 
(11) 
 

If the pool is not full and the result of the expression 
computed in (11) is less than a parameter θ1, a new clas-
sifier will be added. 

Using this method, we must find the posterior probabil-
ity of k instances for finding the best concept and this will 
take much time. To resolve this problem, relying on the 
fact that the instances in the batch are I.I.D, only a sub-



sample of the square root size of the batch is used to esti-
mate the best concept. The pseudocode of this method is 
shown in Procedure 4. In line 2, St contains a subsample 
of the batch Bt and m is its size which is set to the square 
root size of the batch. SLt stores the labels of St. Lines 5 to 
7 find the best describing classifier of the batch according 
to Bayesian method. The variable bestC refers to the best 
classifier and maxA indicates the result of the expression 
computed in (11) for bestC. 

 

Xt = sum_data (Bt); 
St = sub_sample (Bt,m); 
SLt = sub_sample (Lt,m); 
/* stores the labels of the St*/ 
(maxA , bestC) = (max,argmax)j:1..size(Pool) 

(m* log (RDC.prob(xt,j)) +  
Σ i=1:m log (Pool[j].prob(Si,SLi)) ); 
if  (maxA>θ1 or size(Pool)>maxC) 
     Pool[bestC].update(Bt,Lt); 
else 
     C = make_classifier(Bt,Lt); 
     Pool = Pool U {C}; 
     bestC = size(Pool); 
end if 
RDC.update(xt,bestC); 

1 
2 
3 
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Procedure 4. Bayesian method for updating classifiers’ pool. 

Heuristic method for Updating the Classifiers’ Pool 
To find the best concept describing Bt and Lt, the accu-

racy of all classifiers on Bt will be measured. If the pool is 
full and a new classifier cannot be added, the best classifi-
er is updated with Bt and Lt. But if the pool is not full and 
the accuracy of the best classifier for this batch of data is 
more than a parameter θ2, then the best existing classifier 
is updated by Bt and Lt. Otherwise if the accuracy of clas-
sifier is less than θ2, a new classifier is created and trained 
on this batch. The reason of using this approach is that the 
more the accuracy of a classifier on the current batch is, 
the more relevance it may have to the batch. Therefore, 
the concept this classifier describes can be refined or ex-
tended using the current batch of data. The pseudocode of 
this method is shown in Procedure 5. Lines 4 and 5 find 
the best classifier describing the batch according to heu-
ristic method. The variable bestC refers to the best clas-
sifier and maxA indicates the accuracy of that classifier on 
the current batch. 

 

St = sub_sample (Bt,m); 
SLt = sub_sample (Lt,m); 
/* stores the labels of the St*/ 
(maxA , bestC) = (max,argmax)j:1..size(Pool) 

(pool[j].accuracy(St,SLt)); 
if  (maxA>theta or size(Pool)>maxC) 
     Pool[bestC].update(Bt,Lt); 
else 
     C = make_classifier(Bt,Lt); 
     Pool = Pool U {C}; 
     bestC = size(Pool); 
end if 

1 
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3 
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Procedure 5. Heuristic method to update classifiers’ pool. 

3.3 Phase 3: determining the active classfier (or 
classfier weithts) 

After phases 1 and 2 are done, some final operations 
should be done before moving to the next iteration. If 
phase 1 is done according to the active classifier, the ac-

tive classifier should be set. Active classifier is the one 
that has been updated with the current batch of data, i.e. 
the bestC parameter of our algorithm. 

If phase 1 is done in the second way, the weights 
should be initialized for the next iteration. The weights of 
the classifiers in the pool are set so that in the next itera-
tion, the performance of the method will be high. Each 
classifier is tested on a subsample of the square root size 
of the batch and its weight is set by: 

:L� 	 = =��M�N		, (12) 
 

Where A(i) is the accuracy of the i th classifier. A clas-
sifier which classifies the current batch poorly, will have a 
less initial weight. Some kind of locality assumption is 
used in (12) for setting the initial weights which does not 
work properly when a sudden concept drift occurs. Phase 
1 tries to handle this problem by updating the weights 
while processing the batch. The pseudocode of this me-
thod is shown in Procedure 6. 

St = sub_sample (Bt,m); 
SLt = sub_sample (Lt,m); 
for  j=1 to size(Pool) do 
     c_error= Pool[j].error(St,SLt); 
     Wj= beta^(2^c_error); 
end for 

1 
2 
3 
4 
5 
6  

Procedure 6.  Determine classifier weights. 

4 Experimental Results  
In this section, we first introduce the data sets containing 
recurring concepts which are used in the experiments. 
Then we discuss the parameter tuning of our method and 
compare it to the parameters of CCP framework. In the 
last subsection the proposed methods are compared with 
each other and the CCP framework, one of the most prom-
ising frameworks developed in the tracking of recurring 
concepts. The experiments show the effectiveness of our 
method. 

4.1 Data sets 
Three real datasets and one artificial dataset are chosen 

for the experiments given in this section. The artificial 
dataset is moving hyperplanes and contains sudden con-
cept drift. Real datasets are emailing list [Katakis et al., 
2009], spam filtering and sensor data. Emailing list and 
spam filtering are high dimensional datasets and sensor 
data is a very large real dataset. Emailing list and hyper-
plane datasets contain sudden concept drift and spam filter-
ing and sensor data contain gradual drift. 

Emailing List Dataset 
 The emailing list (elist) dataset which is used in [Kata-

kis et al., 2009] contains a stream of emails about different 
topics shown to the user one after another and are labeled 
as interesting or junk. To construct this dataset, the data in 
usenet posts [Frank, 2010] which exists in 20 newsgroups 
collection is used and three topics are selected. The user is 
interested in one or two topics in each concept and so 
he/she labels the emails according to his/her interest. The 
interests of the user can be changed in time and so this 
dataset simulates recurring concepts and concept drift (Ta-
ble 1). The dataset contains 1500 instances with 913 
attributes and is divided into 5 time periods with equal 
number of instances .  

Spam Filtering Dataset 



This dataset is obtained from Spam Assassin‡ collec-
tion and contains email messages. The dataset consists of 
9324 instances with 500 attributes and represents gradual 
concept drift .  

 
Table 1. Emailing List Dataset (elist) [Katakis et al. 2009] 

 1-300 300-600 600-900 900-1200 1200-1500 

Medicine + - + - + 

Space - + - + - 

Baseball - + - + - 

Hyperplane Dataset 
This dataset simulates the problem of predicting class 

of a rotating hyper plane. In an n-dimensional space, a 
hyper plane decision surface is the equation D�EO	 =:PPO. EO = 0 where  :PPO determines the orientation of the sur-
face and EO is an instance in the space. If D�EO	 > 0, EO’s 
label is 1, otherwise it is 0. To simulate concept drift, the 
orientation of the hyper plane is changed over time. Our 
dataset has 8000 instances with 30 real attributes. There is 
a concept drift after each 2000 instances. There are only 
two concepts which reappear after the first 4000 instances. 
This dataset shows the problem of sudden concept drift 
and recurring concepts. 

Sensor dataset   
Sensor dataset is a real dataset which consists of the in-

formation collected from 54 sensors deployed in Intel 
Berkeley Research laboratory in a two-month period [Zhu, 
2010]. The class label is the sensor ID, so there are 54 
classes, 5 attributes and 2,219,803 instances. The type and 
place of concept drift is not specified in the dataset but it is 
obvious that there are some drifts. For example, lighting or 
the temperature of some specific sensors during the work-
ing hours is much stronger than nights or weekends 

4.2 Parameter Tuning 
One of the advantages of the proposed method is that 

its parameters can be tuned in a much simpler way com-
pared to the CCP framework method and small changes of 
parameter values, do not lead to major variations in per-
formance. On the other hand, the CCP framework method 
has a θ parameter which is somehow similar to our θ1 and 
θ2 parameters. If this parameter is set wrongly in CCP 
framework method, the accuracy of the classification will 
decrease significantly. For example, θ should be 4 for elist 
and 2.5 for spam filtering dataset. If we set θ to 2.5 instead 
of 4 for elist dataset, its accuracy will be 55% rather than 
77%. 

If weighted classification method is used in phase 1, a 
parameter β is required to update the weights which is by 
definition in [0,1). The more sudden the concept drift is, 
the smaller the parameter should be. We have set this pa-
rameter to 0.1 for all datasets. Another parameter is the 
maximum classifier number (maxC) which is set to 10 and 
implies that we expect to have at most 10 different con-
cepts. In addition, we have a parameter θ1 in the heuristic 
method which is a threshold for the accuracy of the best 
classifier. So the more the maxC parameter is and the less 
sudden the concept drift is, the higher θ1 should be. We 
have set this parameter to 0.95 for all datasets which 

                                                 
‡ The Apache SpamAssasin Project - 
http://spamassassin.apache.org/ 

means that only when a classifier has the accuracy more 
than 0.95 on a batch, it will describe the concept of the 
batch correctly. For the other parameter, θ2, in the Baye-
sian method, we have set it to 2 ∗ log�0.75	 ∗ %, accord-
ing to its definition. This is because we believe if each of 
the 2m probabilities of (11) is at least 0.75, then the con-
cept can be relevant to the batch and its labels. The batch 
size is set to 50 for elist and spam filtering datasets and 
500 for hyperplane dataset. 

As a result, parameter tuning for our method is simpler 
than CCP framework method and the same parameters 
work well for all datasets with different natures we have 
chosen. The only parameter that does not have the same 
value for all datasets in our experiments is the batch size. 
This problem also exists in the CCP Framework method 
and must be resolved according to the properties of the 
dataset. 

The reason behind our claim that our parameter setting 
is simple is that most of these parameters can be expressed 
as some property of the datasets, but setting the parameters 
correctly needs some knowledge about the dataset. 

4.3 Results and Discussion 
We compared our method with the CCP Framework 

method [Katakis et al., 2009] in terms of accuracy, preci-
sion, recall and running time. We have discussed how to 
tune our method’s parameters in the previous subsection. 
The results of our experiments on elist, spam filtering, 
hyperplane and sensor datasets are shown in tables 2, 3, 4 
and 5, respectively. 

comparison of methods’ accuracies, precisions and 
recalls 

The results for elist and hyperplane datasets that simu-
late sudden concept drift are much better when using the 
weighted classifiers method rather than active classifier 
method. The difference of about 8% in the accuracies can 
be seen. We have tested the weighted classifiers method in 
conjunction with the CCP framework method and the same 
result can be seen in terms of increase in the accuracy. This 
is reasonable, because when a sudden concept drift occurs, 
the active classifier which is appropriate for the last batch 
works poorly in classifying the current batch. When the 
weighted classifiers method is used, after receiving the 
first few instances of the batch, the classifier’ weights are 
adapted so that the concept drift is taken into account and 
the classification task will have a higher accuracy.  

As a comparison, our weighted classifiers method out-
performs the CCP framework method for sudden concept 
drift and has similar results for gradual concept drift. Our 
batch assignment methods (Bayesian and heuristic) have 
results similar to the CCP framework method without hav-
ing parameter setting problems discussed previously. 

In sensor dataset, CCP and Bayesian batch assignment 
methods have lower performances (between 9% and 15% 
of accuracy) than Heuristic method. This means that CCP 
framework and Bayesian method have some problems in 
determining the true concept of a batch in sensor dataset. 
One problem with CCP framework method is that it uses 
the Euclidean distance as the measure of similarity of a 
batch to a concept. ConDis, the distance measure used in 
CCP, is dependent on the magnitude of the attribute values 
and an attribute with large values can reduce the effects of 
the other attributes in the distance calculation. The prob-
lem of Bayesian method could be possibly the I.I.D as-



sumptions made in it. However, Bayesian method still out-
performs than CCP framework method (about 3%). 

 
Table 2. Results of all methods on elist dataset. 

Batch 
assignment 

Method 

Classification 
Method 

Acc. P R 
F-

measure 
Time 

CCP 
Active 0.77 0.73 0.81 0.77 1004 

Weighted 0.82 0.79 0.83 0.81 1274 

Heuristic 
Active 0.75 0.71 0.77 0.74 1816 

Weighted 0.82 0.8 0.83 0.81 1843 

Bayesian 
Active 0.75 0.71 0.8 0.75 2089 

Weighted 0.82 0.8 0.84 0.82 2462 

 

Table 3. Results of all methods on spam filtering dataset. 

Batch 
assignment 

Method 

classification  
method 

Acc. P R 
F-

measure 
Time 

CCP 
Active 0.91 0.91 0.84 0.94 2217 

Weighted 0.89 0.92 0.87 0.93 2820 

Heuristic 
Active 0.89 0.91 0.84 0.93 3942 

Weighted 0.89 0.92 0.89 0.93 4112 

Bayes 
Active 0.89 0.9 0.86 0.93 4537 

Weighted 0.88 0.91 0.91 0.92 5405 

 

Table 4. Results of all methods on Hyperplane dataset. 

Batch 
assignment 

Method 

classification  
method 

Acc. P R 
F-

measure 
Time 

CCP 
Active 0.76 0.72 0.81 0.78 868 

Weighted 0.83 0.81 0.83 0.84 947 

Heuristic 
Active 0.76 0.73 0.77 0.78 974 

Weighted 0.84 0.81 0.83 0.85 970 

Bayes 
Active 0.78 0.75 0.8 0.8 876 

Weighted 0.86 0.83 0.84 0.87 899 

 

Table 5. Results of all methods on sensor dataset. 

batch 
assignment 

classification  
method 

Accuracy Time 

CCP 
Active 0.71 370560 

Weighted 0.71 813398 

Heuristic 
Active 0.87 929289 

Weighted 0.86 846226 

Bayes 
Active 0.74 883682 

Weighted 0.74 1299652 

Comparision of methods’ run times 
The run time of each method is shown in the last col-

umn of the result tables (Table 2-5). The most time con-

suming part of these methods is the time spent calling the 
training and test methods of the classifiers. In the CCP 
framework method additional time is spent on the con-
struction of the conceptual vectors and the clustering task. 
In all methods, each instance of the batch is used once to 
update a classifier in the pool. The difference is in the 
number of times an instance is classified or its posterior 
probability distribution is measured by the classifiers. 
Simply, assume that T0 is the time taken to classify an in-
stance and T1 is the time taken to find the posterior proba-
bilities for it. In the classification task, each data is classi-
fied only once in all batch assignment methods and so the 
only major differences are in updating the classifiers’ 
weights and in phase 2 where the updating of the classifi-
ers’ pool is done. Suppose that the subsample size of the 
batch used in both the heuristic and the Bayesian methods 
is m. In the heuristic method, each of the m instances is 
classified once using all of the classifiers in the pool and in 
the Bayesian method, the posterior probabilities of each of 
the m instances are measured by each of the classifiers. In 
the Bayesian method, one posterior probabilities estima-
tion and one update by the raw data classifier is also re-
quired for each batch but this can be ignored. So the time 
required in the heuristic method is at most % ∗ %+EY ∗ ZL 
and in the Bayesian method is at most % ∗ %+EY ∗ Z�. T1 
is greater or equal to T0 according to their definitions. So in 
general, we expect using the Bayesian method is more 
time consuming rather than the heuristic method, because 
the maximum time computed for Bayesian method is 
greater. This can be seen in tables 2 and 3, but not in the 
last dataset, because in this problem setting only two clas-
sifiers are added to the pool for the Bayesian method 
(among 10 possible classifiers).  

In addition, we use a subsample of the batch to update 
the weights in the weighted classifiers method. Each of the 
instances in this subsample is classified by each of the 
classifiers in the pool to find the classifiers’ errors. So if 
we use the same subsample of the batch for both updating 
the classifiers and their weights, we will obtain a time sav-
ing when using Heuristic and weighted classifiers me-
thods. Therefore for each of batch assignment methods, 
using weighted classifiers method will consume more time 
than using active classifier. This can be seen in tables 2 to 
4 for our three datasets, except in the Heuristic method 
because of the time saving we mentioned. 

At last, Bayesian method takes the most time among all 
batch assignment methods while Heuristic and CCP me-
thods take almost the same time using active classifier and 
Heuristic method is better when using weighted classifiers. 

5 Conclusion and Future Works  
We have proposed a method with some variations for 

streaming data classification in the presence of concept 
drift and recurring concepts. The general framework used 
in this paper maintains a pool of classifiers and updates 
them according to consecutive batches of data. The clas-
sifiers in the pool are used to classify new batches of data. 
The most similar method to our method is the CCP frame-
work. Our method improves the accuracy while its para-
meter tuning is simpler. 

Some future research works related to this study might 
include the followings. First, managing the classifiers in 
the pool can be done more complexly. For example, clas-
sifiers can be merged or removed to handle more compli-
cated situations. Second, parameters of the algorithm are 



dependent on the datasets. If they can be set dynamically 
according to the datasets, the algorithm will work properly 
for all datasets. Third, the algorithm should be run on 
more real datasets in order to achieve more reliable re-
sults. 
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