
NERSENG: Query Analysis and Indexing

Carsten Kropf, Bertram Schlecht
Institute of Information Systems

D-95028, Hof, Germany
{carsten.kropf, bertram.schlecht}@iisys.de

Abstract
This article describes the general setup of
NERSENG, a search engine for named entity re-
lated web documents. The search engine is, in
this case, mainly adopted towards analyzing the
documents searching for person names occurring
inside the textual parts of crawled documents.
We explain the general search engine architec-
ture as well as the occurrence and distribution
of entities (person names) in queries and docu-
ments. The two major contributions of our work
are on the one hand methods to automatically ex-
tract entities from unstructured queries and on
the other hand an efficient indexing strategy for
being able to deliver the search results fast to a
query issuer.

1 Introduction
Search engines gained increasing interest over the last
years. Major providers, like Google, Bing or Yahoo get
billions of requests every day. These standard textual re-
trieval engines have to efficiently handle access to the full-
texts crawled and indexed before. Therefore, established
technologies, like the inverted index can be used to effi-
ciently explore the underlying data space.
These techniques have been investigated for a long time,
now, and users can, nowadays, use a sophisticated set of
methods to retrieve the desired results. Not only the deep
web analysis, also the storage, retrieval and ranking parts
of the search engines are very sophisticated, today.
However, in most cases, the standard search engines only
search for occurrence of certain terms inside texts. These
texts may also be searched for phrases. Yet, most queries
are retrieved solely from an inverted index. Structured
information, derived in advance, cannot be searched by
most search engines, whereas there also exist approaches
(like Google Knowledge Graph). However, these struc-
tured searches mostly rely on structured information and
cannot intermix the data with searches for keywords. Thus,
there is the lack of a possibility to search for, e.g., a person
name and keywords related to this name.
There already exist methods for extracting structured infor-
mation from unstructured texts, like named entity recogni-
tion (NER) technologies which are able to extract, e.g. a
person or company name, from a fulltext part. Likewise,
those information might also come from data stored as se-
mantic annotations inside the texts. Based on this, there
also exists the possibility to enhance the retrieval process
by taking into account these portions of information also

for searches.
Searches (except phrase searches) always focus a certain
topic. This topic is then intermixed with certain keywords
closely related to it. As an example, people searching for
“Bill Cutting” (a role of the film Gangs of New York) might
also want to know how much money the actor got for this
role. In this case, the entity (person name) is mixed to-
gether with a query keyword to filter the articles about the
person after this keyword, e.g. “Bill Cutting money”. Most
fulltext search engines would then retrieve data containing
the keywords and not necessarily detect the entity name
inside this query. For our example the user mostly gets re-
sults, which describe how to save money by reducing bills.
Only a few of these results is linked to the entity “Bill Cut-
ting”.
This paper results from NERSENG (Named Entity
Retrieval Search ENGine), a web search engine focussed
towards exactly these objects of investigation is given.
We try to build a search engine supporting simultaneous
searches for named entities together with query keywords
to construct a more sophisticated searching experience for
users.
This paper describes current work carried out with focus on
the following parts:
• Statistics of entities in search queries and documents

(section 3)
• Description of the search engine (section 4)
• Detection of entities in search queries (section 5)
• Database and indexing scheme used for stor-

ing/retrieval of the documents (section 6)

2 Related Work
The index structure used for storing the data for enabling
fast search operations is based on a B-Tree (B+-Tree)
[Bayer and McCreight, 1972]. Hybrid index structures ex-
tending the functionality of base structures to enable fast
access to heterogeneous data types have already been pro-
posed for geo-textual application domains. Most of the
structures focus towards Geographic Information Retrieval
Systems. Examples for these structures are the (M)IR2-
Tree [Felipe et al., 2008] or the bR*-Tree [Zhang et al.,
2009]. An overview of currently available and used tech-
niques in the research area of spatial keyword query pro-
cessing can be found in [Chen et al., 2013]. Retrieval tech-
niques which build the basics of the hybrid index structure,
used here, can be found in [Göbel et al., 2009] or [Göbel
and Kropf, 2010] which also use Zipf’s Law [Zipf, 1949]
to distinguish between high and low frequently used terms.
However, all of these structures are focussed on spatial in

combination with textual searches whereas this paper fo-
cusses on a combination between texts and entities occur-
ring inside the textual parts extracted in advance.
A compressed trie [Morrison, 1968] is used for extracting
candidates from the particular search queries.
[Cheng et al., 2007] deals with query construction and
ranking of entities in an entity-based search engine, though
we do not want a user to learn a new syntax for search
queries. [Guo et al., 2009] describes a probabilistic ap-
proach for finding named entities in queries. However, we
are of the opinion that within a search engine, a statistical
approach is slower than using a trie. Within [Kumar and
Tomkins, 2009] the behaviour of online search queries is
discussed and it is shown that queries can be divided into
different classes, e.g. URL-queries.

3 Entities in Queries and Documents
In order to show that an entity-based search engine adds
some value compared to a traditional one we have to show
that a certain percentage of queries contains an entity, in
our case a person. [Kumar and Tomkins, 2009] show that
52.9% of all web queries contain a structured object, e.g.
a product, a location or a person. But for our work we
are temporarily only interested in the amount of queries
containing a person. Since no entity-annotated corpus for
search queries is, to our knowledge, freely avaible, we try
to approximate this number, with different algorithms ex-
plained in the following.

3.1 Approximation of Search Queries with
Entities

Named Entity Recognition usually considers the semantic
structure of a text. However search queries have in most
cases no semantic structure, e.g. from the query ”Bill Cut-
ting money” no conclusion can be made whether “Bill Cut-
ting” refers to a person or not. For the approximation of
search queries with entites we use an approach which dis-
regards the semantics of the queries. It will be described in
the following.
As a data base for the approximation we use the AOL
Query Log1, which includes a total of ∼ 36M search
queries. Since the corpus contains many duplicate queries
and this would influence our measurement results we re-
moved redundant elements and created a list which con-
tains ∼ 11M unique queries. Our approach to find persons
in queries is a lookup in a name list. We first split queries
at whitespaces into single words. After that we check if
one of the words is included in the name list. At this point
we ignore the capitalization of the single words and names,
because web search queries mostly consist of lowercase let-
ters. The list itself was created from the data of the 1990
U.S. Census list of surnames and first names2. This method
shows the result that 50.64% of the queries contain a name.
This outcome is based on the fact that some elements of
the name list have ambiguous meanings, e.g. the list in-
cludes the last name ’in’ which is one of the most common
words in english. Due to this we tried to filter the list, re-
moving all words which have ambiguous meanings. Our
first approach uses WordNet (see [Miller, 1995]), a lexical
database for the English language. We make the assump-
tion that an element of the name list, which is also included

1http://www.gregsadetsky.com/aol-data/, accessed 2013-06-
20

2http://www.census.gov/genealogy/www/data/1990surnames/
names files.html, accessed 2013-06-20

in WordNet, has other meanings than just the name and re-
move the element from the list. Our result with this filtered
list is that 13.75% of all queries contain a name. However
WordNet includes also names, mostly of famous or histor-
ical persons, so our first assumption isn’t quite correct and
we removed words from the list which are actual names and
have no other meaning. Consequently we implemented a
second algorithm for filtering the name list (see algorithm
1).

Algorithm 1: filterList(names)
// Generate the filtered name list
FN from the given census name list

1 for n ∈ names do
// Generate similary word list
from WordNet

2 S.add(n)
3 S.add(similarWords(name, α))

// Check the shape of each element
of S. If it’s a potetial name add
it to C

4 for s ∈ S do
5 if hasNameShape(s) then
6 C.add(s)

// Sum up the probability of every
word in S and C

7 PS = sumProb(S)
8 PC = sumProb(C)

// Check if the relation between
PC and PS ist greater then a given
factor β. If yes add it to the
filtered name list

9 if PS != 0 then
10 if PC / PS >= β then
11 FN.add(n)

Thereby the method “similarWords” generates a list of
similar words from the original name using WordNet. Ini-
tially, all synsets (a set of synonyms) of the “name” pa-
rameter are loaded from WordNet. Every word of a sin-
gle synset is checked whether the Levenshtein distance (see
[Levenshtein, 1966]) is less than the passed paramter α. In
this case, the word is added to a return list which forms the
set S together with the original name. A small α param-
eter allows only words which differ in a few letters from
the original word, whereas a high α parameter, e.g. ten,
allows completely different words. Thus, a set C is gener-
ated, which contains all the potential names of S. A word
in S is a potential name if it passes the “hasNameShape”
method, which checks if the first character the given word
is uppercase and the following characters are lowercase,
with the return value true. Then the summed word proba-
bilities of the sets C and S are calculated and stored in the
variables PS and PC. For this the word distribution, within
the two corpora Reuters TRC2 and RCV13, serves as a data
base. If the ratio of these probabilities is greater than β, the
word is added to the filtered name list. In figure 1 the num-
ber of queries that contain entities, for different values of α
and β is shown.

We see that the higher the selected values of α and β
3http://about.reuters.com/researchandstandards/corpus/,

accessed 2013-06-18

Figure 1: Queries with entities for different α and β values

are, the more names are filtered out of the list. From a
certain level of the α-value the number of filtered names
does not increase any longer , because every word from
every synset is added to S. With a β value of 100%
only names are accepted, for which the Sets C and S
are identical. We cannot make definitive statements
about accurate values of alpha and beta, at the moment.
However, we have manually checked 2000 queries and
326 of them contain a person (16.3%). So we imply that a
α value of nine and a β value of 95% brings the best results.

3.2 Distribution of Entities to Documents
To determine the distribution of entities to documents the
Reuters RCV1 corpus was automatically annotated us-
ing the Stanford NER system (see [Finkel et al., 2005])
which is part of the Stanford Core NLP4. As models we
used the “english-left3words-distsim.tagger” for the part of
speech tagger and “english.all.3class.distsim.crf.ser.gz” for
the ner system. The corpus contains a total of 806K doc-
uments from those 491K include entities, in our case per-
sons. Overall the corpus contains ∼ 486K entities. As
491000
806000 ≈ 61% of the total document corpus contains per-
son names as entities and our work focusses on crawling
web sites containing news, we are optimistic that also in a
realistic data environment a large percentage of the crawled
documents will contain entities.

Figure 2: Distribution of Entities to Documents

4http://nlp.stanford.edu/software/corenlp.shtml, accessed
2013-06-20

The distribution of entities to documents of Reuters
RCV1 dump can be seen in figure 2. The maximum number
of entities inside documents is 1064. All documents from
Reuters RCV1 that contain persons have an average size
of 289.69 words and 5.73 entities. The distribution shows
an extreme positive skewness which means that most of
the documents contain less than or exactly 7 entities (third
quartile). Therefore, we are optimistic that on the one hand
building the hybrid index, described later, and (re-)building
the trie is sufficiently fast.

4 Search Engine Architecture
As the main contributions of this work, entity detection and
hybrid indexing, are embedded in a search engine applica-
tion, we will describe shortly the process to get documents
from the web, analyze the data and store them in a database
for retrieval via a search engine.
Figure 3 displays an overview over the entire search engine

Figure 3: Overview over the Search Engine Architecture

architecture with the particular main contributions of our
research work embedded inside. The particular individual
parts are described in a little more detail in the following
subsections.

4.1 Crawling and Analyzing
The first two parts in the document generation are crawl-
ing and analysis of the crawled documents. Therefore, two
possibilities are given to retrieve documents from the web.
On the one hand, there exists the possibility to crawl the
web documents just by seeding a list of uniform resource
identifiers (URIs) which is then input into a deep web anal-
ysis. Then, the list of URIs to be crawled from each initial
URI is generated sequentially and queued to be crawled in
a later step. On the other hand, there exists a module to
crawl based on RSS feeds. There again, an initial seed of
sites is generated (manually) whose RSS information are
retrieved repeatedly based on the time restrictions given by
each individual site which offers the RSS feed information.
The crawler may, based on the given information, there-
fore download portions of information from the web which
are analyzed in a further step. The boilerpipe5 library is
thereafter used to extract the boilerplate free fulltext. This
approach serves to derive the “really” relevant information
from the crawled sites to remove, e.g. advertisements or
link lists from the web page content which is then used for

5https://code.google.com/p/boilerpipe/, accessed 2013-06-10

further analysis steps.
The analysis needs to take into account the particular fea-
tures to be extracted from the texts. These should be pre-
pared in order to store them in the database environment,
we will describe in the following. The fulltext part is split
into individual terms using normalization (e.g. character
normalization and stemming) and thus pre-processed for
the use of the hybrid index structure. This process is ex-
ecuted using the Apache Lucene6 library. The other part,
besides the fulltext to be extracted from the crawled web
documents are the entities. As described in section 3, the
named entities in our case with focus on person names are
extracted from the documents using the Stanford NLP li-
brary modules with appropriate models to analyze the web
articles.

4.2 Indexing Environment
For indexing the data crawled and analyzed in advanced,
we use a relational database system. The h2 database7

is used as the database server, in this case. This section
details the setup and adaptions made for the h2 database to
run properly for storage of the search engine.
The database itself was extended to allow custom index
structures to be set up on tables which are loaded from
external places. As the database is implemented in Java,
there exists a mechanism to load the index structures from
jar files and instantiate them as access methods for certain
columns.
For enabling the h2 database to load external index
structures from jar files, two tables are introduced which
store information about the access structures:

• INDICES, storing the information about the index
structures available for the database and

• OPCLASSES, storing information about so called op-
erator classes which make the index structures, which
are generalized, work for specific data types.

Table Column Meaning
INDICES

ID Primary Key
NAME Name of the

index structure
FILE File name to find

the index in
OPCLASSES

ID Primary Key
NAME Name of the

operator class
FILE File name to find

the operator class in
INDEX Index reference

(Foreign Key)

Table 1: Table Definition of the custom tables for index
structure dynamic loading

The indices table stores information about the index name
and the file name which contains the index structure.
The table OPCLASSES stores information about a certain

6http://lucene.apache.org/core/, accessed 2013-06-19
7http://www.h2database.com/html/main.html, accessed 2013-

06-07

operator class which is linked to an index structure. The
operator class serves as concrete implementation of certain
functionality required by a particular index structure to
be able to deal with a certain kind of data stored inside
the database table. An operator class for a B-Tree imple-
mentation could thus provide functions for comparing or
ordering several values.
Besides the two database tables, also the SQL command
for creating index structures was extended inside the h2
database so that the names of the index structure (as seen in
table 1) and the name of the respective operator class may
be passed to this command. The syntax of the modified

CREATE { [UNIQUE] [HASH] [indexType]
INDEX [[IF NOT EXISTS] newIndexName]
| PRIMARY KEY [HASH] } ON
tableName (indexColumn [,...])
[USING opclassType]

Figure 4: Syntax of the modified Create Index Command

command can be seen in figure 4. The fields “indexType”
and “USING opclassType” are the basic extensions done
to the command. The index loader then looks inside
the indices table for the name specified by “indexType”
and the associated operator class from opclasses given in
“USING opclassType”. Therefore, for setting up an index
called “bitlistbtreeindex” on a table called “documents”
using the column “doc” and the associated operator class
“docopclass” can be done as in the following statement:
CREATE bitlistbtreeindex INDEX ON
documents (doc) USING docopclass.
These are the general adaptions we have done to the
h2 database to enable it to extend the index structures
currently available and to create new index structures
based on the h2 basic definitions.

4.3 Query Interface
The query interface we present to the user does not differ
from standard query interfaces from retrieval engines. Our
goal is not to let the user select a certain type of entity to
search for based on a pre-defined input field but to parse
the query components directly from the query. Therefore,
we decided only to have one field to enter the keywords
in and not distinguish between fulltext keyword part and
named entity (person name) part. The query interface is di-
rectly connected to the storage engine which serves the data
stored inside the database using the hybrid index structure,
described in section 6.

5 Entity Detection in Search Queries
Extracting the existing entities from the unstructured
search queries is one of the most important aspects in this
search engine. We try to achieve this without the need
of specifying additional input fields. Therefore, we need
methods to separate the query keywords from entity search
candidates in unstructured queries.
Hypothetically, each of the used query keywords might
be a candidate for an entity to be found. Initially, every
sequence of query keywords may be regarded as a can-
didate for the entities. Therefore, a mechanism has to
exist to filter candidates in order to leave the search effort
low when communicating with the database. We chose a
compressed trie variant stored in main memory for entity

candidate filtering.
This compressed trie is set up on top of the entities
extracted from the already stored documents inside the
existing database. This structure might also be used for
auto-completion functionalities in the future. Based on
the document statistics used in our test setup, we built the
compressed trie to determine the resource allocation inside
a real world scenario.
For approximating the performance of the compressed trie,
we choose to evaluate the annotated RCV1 corpus (see
3.2).
The different candidates are generated based on the
assumption that entities containing more than one word
are always written in sequence. Consider, e.g., the query
phrase S = (Barack,Obama,election) as input to
the search. Therefore, we generate a set of a set of n-tuples
Q = {T1, T2, . . . , Tn} with cardinalities |Q| = n and
|Ti| = n − (i − 1), 0 < i ≤ n from the initial n-tuple
of keywords S = (w1, w2, . . . , wn), where wk is the
keyword at position k and n is the length of the search
query. For each Ti = {E1,i, . . . , En−(i−1),i} ∈ Q applies
that Ek,i = (wk, wk+1, . . . , wk+i), k ≤ n − i is a tuple
of length i. That means, that from an initial query, we
generate a set of all candidates C = T1 ∪ T2 ∪ . . . ∪ Ti
with the cardinality |C| =

∑n
x=1 x which are subsequently

checked for being entities. From a human point of view,
it is probably obvious that “Barack Obama” is the entity
meant by the query issuer. The approach, described
above, then generates the following set of tuples: Q =
{T1 = {(Barack) , (Obama) , (election)} , T2 =
{(Barack Obama) , (Obama election)} , T3 =
{(Barack Obama election)}}.
As there exist only ∼ 486K entities, generated by the
approach, described above, in total (inside RCV1) and,
based on our measurements, the compressed trie consists
of ∼ 618K nodes, storing this structure in main memory
results in ∼ 200 MB. The memory measurement is carried
out in Java and thus can only serve as an approximate
value. Storing this structure in main memory should not
result in any problems on currently used server machines.
The check for candidates is performed using the previously
generated compressed trie. Each of the generated tuples
is looked up inside the trie and if it is found there, it
may be considered a final candidate entity. For being
able to retrieve the candidates as described before , they
are also stored in the database like this while extracting
the information from the documents. These candidate
entities are then sent to the database, currently using an
“OR” conjunction, and retrieve the data using the hybrid
index structure, described in section 6. Additional ranking
procedures might, in future, take the presence of multiple
individual entities into account. The ranking procedure
and final retrieval process is, however, not yet implemented
and still subject of discussion.
The average query size, determined from AOL Query Log,
is ∼ 3.014 words per query. Therefore, if we ceil the
value to 4, we get a total average amount of entities to be
checked first in the trie and afterwards inside the hybrid
index of

∑4
x=1 x = 10.

We executed short performance measures on the com-
pressed trie. The most important property, here, is the
insertion time as it affects the entire process during
crawling and the search effort of a trie is well known as
O(1) because it is only related to the length of the input.
Therefore, we instantiated the compressed trie from the

database to create it freshly (e.g. in case of a data loss,
when it is simply contained in main memory). We used,
again the prepared Reuters data and imported all known
entities into the trie implementation. Importing the existing
data of ∼ 486K entities extracted as described before, the
insertion procedure took in average ∼ 7500ms. The entire
process of querying the data and inserting them into the trie
took ∼ 33s in average. These numbers show that inserting
the data into the trie on the fly while writing them to the
database does not cost much as inserting one element into
the trie results in 7500ms

486000 ≈ 0.015ms. For an average
document of ∼ 5.73 entities this makes a total average
effort of 0.086ms for handling the trie per document. This
seems to be reasonable as the remaining operations take
much longer (e.g. analysis of the documents or inserting
them into the database).

6 Indexing and Database Storage
Besides other tables for the search engine architecture de-
scribed in section 4, there exists one table storing the doc-
uments in a denormalized form. This table stores the data
to be handled by the index structure. As a full text search
and a search for an entity is supposed to be done simulta-
neously, both parts of data have to be stored inside the table
to compute a document representation from these which is
thereafter indexed by the specialized index structure, de-
scribed in the next subsection. Therefore, the table con-
sists of a fulltext part where the text, pre-processed by the
application using textual normalization, and an entity part
storing an array of named entities associated with the par-
ticular textual document are stored. An overview over the

Table Column Meaning
DOCUMENTS

ID Primary Key
WORDS TXT object

(normalized words)
ENTITIES ARRAY of entities

(varchar)
DOC computed column from

words and entities

Table 2: Table Definition of the document table

main table to put the index on can be seen in table 2. The
index itself is constructed on top of the computed column
“doc” which is a composition of the two column “words”
and “entities”. The entities are stored inside an array of
string values (varchar).
The queries are supposed to retrieve documents in which
the queried entities occur and the textual part is also
present. To support this type of queries efficiently, a new
hybrid indexing method is introduced enabling efficient re-
trieval of this kind of data. The index structure used here
supports the retrieval of combined data of entities and tex-
tual content.
In this case, we use a hybrid index supporting storage of
the heterogeneous data types directly inside one structure.
This technique can be used to support searches of the given
types efficiently. Therefore, there is no need to search in
two different tables or access structures and generate inter-
mediate result sets which are intersected at the end but to
directly navigate to search results fulfilling both types of
search criteria (entities and keywords).

6.1 Architecture
The index structure, used here, is similar to the one
described in [Göbel et al., 2009]. The main changes are
based on the fact that it is implemented in a real world
database system and the change of the augmented struc-
ture. In our case, a base index structure whose elements
will be augmented with the bitlist has to be able to handle
entities (in string representation) efficiently. Therefore, as
the main hybrid structure, we chose a B-Tree (or B+-Tree,
more precisely) whose elements are augmented with a
bitlist which represents the sets of terms valid inside the
subtree pointed to by a specific B+-Tree element.
Figure 5 shows a conceptual overview of the components

Figure 5: Conceptual Overview of the Entity B+-Tree

of the hybrid B+-Tree.
There are some additional structures used for adminis-
tration of the index which are omitted in this graphic for
simplicity reasons.
The central component of the index structure is the entity
B-Tree. It stores combined keys of entity references and
the bitlists which represent the presence or absence of
terms from the initial inverted index. The initial inverted
index itself stores all terms contained in the words column
of the database table. If a term has a frequency higher
than a pre-defined limit, it is moved into the hybrid part of
the entity B-Tree and gets assigned a certain term index.
This term index can then be used as identifier inside the
bitlist. Primarily, the entities are not inserted into the
entity B-Tree. They are stored in the so called “entity
heap” where sequential comparisons of items which do
not yet exceed the previously mentioned limit with respect
to the absolute term frequency. If the limit is exceeded
by one term, all entities referred to by each document
the particular term points to are inserted into the entity
B-Tree and the respective bits are set referring to the term
identified by the assigned term index.

6.2 Algorithms
The insertion is done as described in algorithm 2. First,
the items are added to the entity heap. After this opera-
tion, the references always point to the entity heap, which
stores the document to entity assignment, and not the direct
references to the documents any more. After that, the in-
sertion operation continues to insert the full text terms into
the initial inverted index (line 2). This operation also gen-
erates the list of terms and assignment to the entity heap
references which exceed the artificial limit. If the refer-
ences of one particular term does not exceed the artificial

Algorithm 2: addDoc(doc)
// add the entities to the entity
heap

1 ref = entityHeap.add(doc.getEntities())
// add the terms to the initial
inverted index using the reference
from the entityHeap

2 overflowTerms = initialInvInd.add(doc.getTerms(), ref)
// generate assignments of entities
to terms and documents

3 assignments =
generateEntityTermAssignment(overflowTerms)

4 for entry ∈ assignments do
// insert the entity into the
B-Tree

5 leaf = insertEntity(entry.entity)
// add the term code to documents
assignment at the secondary
inverted index

6 appendCodesDocs(leaf, entry)
// adjust the B-Tree, update the
keys, nodes and bitlists

7 adjustTree(leaf)

limit, the references are stored directly inside the initial in-
verted index. After that, assignments are generated which
point from one entity to all term indices referring to lists
of entity heap references to pre-calculate the operations to
be performed at the secondary inverted index. The ele-
ments of this assignment list are then distributed into the
entity B-Tree where first each entity element is inserted (or
already found) and then the term index to document list
entries from the particular assignment are inserted at the
respective secondary inverted index. After that, the “ad-
justTree” method of the B-Tree is executed. This method
performs the standard B-Tree operations. Additionally, it is
extended to perform adjustments on bitlists to update the B-
Tree, correctly for being able to descend to a subtree which
has a certain term code set and additionally fulfill a search
condition focussed towards an entity.
Searches are executed as described in algorithm 3. It starts
using a list of terms and a set of entities to be contained
in the documents inside the result set. First, the initial in-
verted index is searched for the terms and entities. If one
term does not exceed the artificial limit regarding its ab-
solute frequency in the document collection, it is filtered
sequentially for containment of the set of entities. If the
frequency is higher than the artificial limit the term code is
returned. If the set of term codes is empty, either nothing
has been found or all terms were found inside the initial
inverted index and the intersections are already calculated.
Otherwise, the search is continued inside the hybrid index.
In each element there, checks are performed if the element
satisfies the search condition for an entity and the term in-
dex obtained from the initial inverted index, simultaneously
(line 5). Afterwards, the final result set is built by searching
in each secondary inverted index for the set of term codes
obtained from the initial inverted index. In this step, the en-
tities to retrieve can be simply ignored as the hybrid search
part only delivers valid leaf nodes inside the entity B-Tree
which already have to satisfy the entity search condition.
We also know that there exist entries satisfying both search
conditions as the bitlist represents exactly this behaviour.

Algorithm 3: search(terms, entities)
// search references in initial
inverted index

1 entries = initialInvInd.search(terms, entities)
2 if entries.termCodes = ∅ then

// No term codes (term indices)
available, so the final list is
already built by sequential
filtering

3 return entries.documents
4 else

// Search for entities/bits in
B-Tree (obtain leaf nodes)

5 leafEntries = hybridSearch(entries.termCodes,
entities)
// Search attached secondary
inverted index structures for
elements that satisfy all
predicates

6 resultSet = searchSecondary(leafEntries,
entries.termCodes)

7 return resultSet

7 Conclusions and Future Work
In this paper, we presented a search engine for person
names and full texts intermixed. The approach used here,
may be extended to the use of named entities, in general.
The main focus was on the extraction of named entities
from unstructured queries as well as database indexing. As
this is project still continues, there are still open questions
to be answered in future. A subject of investigation in the
future will be the proper ranking which could also be in-
tegrated directly inside the retrieval process of the index
structure. Another possible subject of future investigation
is the real distribution of entities inside search queries as,
currently, we take already present queries from AOL log.
So, in future, when the system is finally running, it is prob-
ably more meaningful to investigate “real” queries put to
the search engine in order to be able to analyze the real
performance of our approach. We also want to compare
the current trie approach for entity extraction with proba-
bilistic methods.

References
[Bayer and McCreight, 1972] R. Bayer and E. M. Mc-

Creight. Organization and maintenance of large or-
dered indexes. Acta Informatica, 1:173 – 189, 1972.
10.1007/BF00288683.

[Chen et al., 2013] Lisi Chen, Gao Cong, Christian S.
Jensen, and Dingming Wu. Spatial keyword query pro-
cessing: an experimental evaluation. In Proceedings of
the 39th international conference on Very Large Data
Bases, PVLDB’13, pages 217–228. VLDB Endowment,
2013.

[Cheng et al., 2007] Tao Cheng, Xifeng Yan, and
Kevin Chen chuan Chang. Entityrank: Searching
entities directly and holistically. In In VLDB, pages
387–398, 2007.

[Felipe et al., 2008] Ian De Felipe, Vagelis Hristidis, and
Naphtali Rishe. Keyword search on spatial databases.

International Conference on Data Engineering, 0:656–
665, 2008.

[Finkel et al., 2005] Jenny Rose Finkel, Trond Grenager,
and Christopher Manning. Incorporating non-local in-
formation into information extraction systems by gibbs
sampling. In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, ACL ’05,
pages 363–370, Stroudsburg, PA, USA, 2005. Associa-
tion for Computational Linguistics.

[Göbel and Kropf, 2010] Richard Göbel and Carsten
Kropf. Towards hybrid index structures for multi-media
search criteria. In DMS’10, pages 143–148, 2010.

[Göbel et al., 2009] Richard Göbel, Andreas Henrich,
Raik Niemann, and Daniel Blank. A hybrid index struc-
ture for geo-textual searches. In Proceeding of the 18th
ACM conference on Information and knowledge man-
agement, CIKM ’09, pages 1625–1628, New York, NY,
USA, 2009. ACM.

[Guo et al., 2009] Jiafeng Guo, Gu Xu, Xueqi Cheng, and
Hang Li. Named entity recognition in query. In Proceed-
ings of the 32nd international ACM SIGIR conference
on Research and development in information retrieval,
SIGIR ’09, pages 267–274, New York, NY, USA, 2009.
ACM.

[Kumar and Tomkins, 2009] Ravi Kumar and Andrew
Tomkins. A characterization of online search behav-
ior. IEEE DATA ENGINEERING BULLETIN, 32(2):3–
11, 2009.

[Levenshtein, 1966] VI Levenshtein. Binary Codes Capa-
ble of Correcting Deletions, Insertions and Reversals.
Soviet Physics Doklady, 10:707, 1966.

[Miller, 1995] George A. Miller. Wordnet: A lexical
database for english. Communications of the ACM,
38:39–41, 1995.

[Morrison, 1968] Donald R. Morrison. Patricia-practical
algorithm to retrieve information coded in alphanu-
meric. J. ACM, 15(4):514–534, 10 1968.

[Zhang et al., 2009] Dongxiang Zhang, Yeow Meng Chee,
Anirban Mondal, Anthony K. H. Tung, and Masaru Kit-
suregawa. Keyword search in spatial databases: To-
wards searching by document. Data Engineering, In-
ternational Conference on, 0:688–699, 2009.

[Zipf, 1949] George Kingsley Zipf. Human Behaviour and
the Principle of Least Effort: an Introduction to Human
Ecology. Addison-Wesley, 1949.

