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Abstract

Modern sensing technology allows us en-
hanced monitoring of dynamic activities in
business, traffic, and home, just to name a
few. The increasing amount of sensor mea-
surements, however, brings us the challenge
for efficient data analysis. This is espe-
cially true when sensing targets can interop-
erate – in such cases we need learning mod-
els that can capture the relations of sensors,
possibly without collecting or exchanging all
data. Generative graphical models namely
the Markov random fields (MRFs) fit this
purpose, which can represent complex spa-
tial and temporal relations among sensors,
producing interpretable answers in terms of
probability. The only drawback will be the
cost for inference, storing and optimizing a
very large number of parameters – not un-
common when we apply them for real-world
applications.

In this paper, we investigate how we can
make discrete probabilistic graphical mod-
els practical for predicting sensor states in a
spatio-temporal setting. A set of new ideas
allows keeping the advantages of such models
while achieving scalability. We first introduce
a novel alternative to represent model param-
eters, which enables us to compress the pa-
rameter storage by removing uninformative
parameters in a systematic way. For finding
the best parameters via maximal likelihood
estimation, we provide a separable optimiza-
tion algorithm that can be performed inde-
pendently in parallel in each graph node. We
illustrate that the prediction quality of our
suggested methods is comparable to those of
the standard MRFs and a spatio-temporal k-
nearest neighbor method, while using much
less computational resources.

1 Introduction

Sensor-based monitoring and prediction has become a
hot topic in a large variety of applications. Accord-
ing to the slogan Monitor, Mine, Manage [1], series
of data from heterogeneous sources are to be put to
good use in diverse applications. A view of data min-
ing towards distributed sensor measurements is pre-
sented in the book on ubiquitous knowledge discov-

ery [11]. There are several approaches to distributed
stream mining based on work like, e.g., Wolff et al. [21]
or Sagy et al. [15]. The goal in these approaches is a
general model (or function) which is built on the basis
of local models while restricting communication costs.
Most often, the global model allows to answer thresh-
old queries, but also clustering of nodes is sometimes
handled. Although the function is more complex, the
model is global and not tailored for the prediction of
measurements at a particular location. In contrast,
we want to predict some sensor’s state at some point
in time given relevant previous and current measure-
ments of itself and other sensors.

Since his influential book, David Luckham has pro-
moted complex event processing successfully [9]. De-
tecting events in streams of data has accordingly been
modeled, e.g. in the context of monitoring hygiene in
a hospital [18]. However, in our case, the monitoring
does not imply certain events. We do not aim at find-
ing patterns that define an event, although they may
show up as a side effect. We rather want to predict
a certain state at a particular sensor or set of sensors
taking into account the context of other locations and
points in time. Although related, the tasks differ.

Let us illustrate the task of spatio-temporal state
prediction by an example from traffic modeling. The
structure of the model is given by a street network,
which represents spatial relationships. Nodes within
the network represent places, where the traffic is mea-
sured over time. The state of a node is the congestion
at this street segment. At training time, we do not
know which place at which time needs to be predicted
as “jam”. Given observations of the state variables at
the nodes, a model is trained. The model must answer
queries for all parts of the network and all points in
time. For example:

• Given the traffic densities of all roads in a street
network at discrete time points t1, t2, t3 (e.g.,
Monday, Tuesday, Wednesday 8 o’clock): indicate
the probabilities of traffic levels on a particular
road A at another time point, not necessarily fol-
lowing the given ones (e.g., Thursday 7 o’clock).

One particular interest lies in learning probabilistic
models for answering such queries in resource con-
strained environments. This addresses huge amounts
of data on quite fast compute facilities as well as a
rather moderate data volume on embedded or ubiqui-
tous devices.



1.1 Previous Work

In this section, an overview of previous contributions
to spatio-temporal modeling is given. The task of
traffic forecasting is often solved by simulations [10].
This presupposes a model instead of learning it. In
the course of urban traffic control, events are merely
propagated that are already observed, e.g., a jam at a
particular highway section results in a jam at another
highway section, or the prediction is based on a phys-
ical rule that predicts a traffic jam based on a par-
ticular congestion pattern [3]. Many approaches ap-
ply statistical time series methods like auto-regression
and moving average [20]. They do not take into ac-
count spatial relations but restrict themselves to the
prediction of the state at one location given a se-
ries of observations at this particular location. An
early approach is presented by Whittaker et al. [19],
using a street network topology that represents spa-
tial relations. The training is done using simply
Kalman filters, which is not as expressive as is nec-
essary for queries like the ones above. A statisti-
cal relational learning approach to traffic forecasting
uses explicit rules for modeling spatio-temporal de-
pendencies like congestion(+s1, h) ∧ next(s1, s2) ⇒
congestion(+s2, h + 1) [8]. Training is done by a
Markov Logic Network delivering conditional probabil-
ities of congestion classes. The discriminative model is
restricted to binary classification tasks and the spatial
dependencies need to be given by hand-tailored rules.
Moreover, the model is not sparse and training is not
scaleable. Even for a small number of sensors, training
takes hours of computation. When the estimation of
models for spatio-temporal data on ubiquitous devices
is considered, e.g. learning to predict smartphone us-
age patterns based on time and visited places, minutes
are the order of magnitude in demand. Hence, also this
advanced approach does not yet meet the demands of
the spatio-temporal prediction task in resource con-
strained environments.

Some geographically weighted regression or non-
parametric k-Nearest Neighbour (kNN) methods
model a task similar to spatio-temporal state predic-
tion [23, 12]. The regression expresses the temporal
dynamics and the weights express spatial distances.
Another way to introduce the spatial relations into the
regression is to encode the spatial network into a kernel
function [7]. The kNN method by Lam et al. [6] models
correlations in spatio-temporal data not only by their
spatial but also by their temporal distance. As stated
for spatio-temporal state prediction task, the partic-
ular place and time in question need not be known
in advance, because the lazy learner kNN determines
the prediction at question-time. However, also this
approach does not deliver probabilities along with the
predictions. For some applications, for instance, traf-
fic prognoses for car drivers, a probabilistic assertion
is not necessary. However, in applications of disaster
management, the additional information of likelihood
is wanted.

As is easily seen, generative models fit the task
of spatio-temporal state prediction. For notational
convenience, let us assume just one variable x. The
generative model p(x, y) allows to derive p(y|x) =
p(x, y)/p(x) as well as p(x|y) = p(x, y)/p(y). In con-
trast, the discriminative model p(y|x) must be trained

specifically for each y. In our example, for each place,
a distinct model would need to be trained. Hence, a
huge set of discriminative models would be necessary
to express one generative model. A discussion of dis-
criminative versus generative models can be found in a
study by Ng and Jordan [13]. Here, we refer to the ca-
pability of interpolation (e.g., between points in time)
of generative models and their informativeness in de-
livering probability estimates instead of mere binary
decisions.

Spatial relations are naturally expressed by graphical
models. For instance, discriminative graphical models
– as are Conditional Random Fields (CRFs) – have
been used for object recognition over time [2], but also
generative graphical models such as Markov Random
Fields (MRFs) have been applied to video or image
data [22, 4]. The number of training instances does not
influence the model complexity of MRFs. However,
the number of parameters can exceed millions easily.
In particular when using MRFs for spatio-temporal
state prediction, the many spatial and temporal rela-
tions soon lead to inefficiency.

1.2 Graphical Models

The formalism of probabilistic graphical models pro-
vides a unifying framework for capturing complex
dependencies among random variables, and building
large-scale multivariate statistical models [17]. Let
G = (V,E) be an undirected graph with the set of
vertices V and the set of edges E ⊂ V × V . For each
node (or vertex) v ∈ V , let Xv be a random variable,
taking values xv in some space Xv. The concatenation
of all n = |V | variables yields a multivariate random
variable X with state space X = X1 × X2 × · · · × Xn.
Training delivers a full probability distribution over
the random variable X. Let φ be an indicator func-
tion or sufficient statistic that indicates if a configura-
tion x obeys a certain event {Xα = xα} with α ⊆ V .
We use the short hand notation {xα} to denote the
event {Xα = xα}. The functions of x defined in the
following can be also considered as functions ofX – we
replace x by X when it makes their meaning clearer.
Restricting α to vertices and edges, one gets

φ{v=x}(x) =

{
1 if xv = x

0 otherwise,

φ{(v,w)=(x,y)}(x) =

{
1 if (xv,xw) = (x, y)

0 otherwise

with x ∈ X , xv ∈ Xv and y ∈ Xw. Let us now define
vectors for collections of those indicator functions:

φv(x) :=
[
φ{v=x}(x)

]
x∈Xv

,

φ(v,w)(x) :=
[
φ{(v,w)=(x,y)}(x)

]
(x,y)∈Xv×Xw

,

φ(x) := [φv(x),φe(x) : ∀v ∈ V, ∀e ∈ E] .

(1)

The vectors are constructed for fixed but arbitrary or-
derings of V,E and X . The dimension of φ(x) is thus
d =

∑
v∈V |Xv|+

∑
(v,u)∈E |Xv| × |Xu|. Now, consider

a data set D =
{
x1,x2, . . . ,xN

}
with instances xi.

Each xi consists of an assignment to every node in
the graph. It defines a full joint state of the random



variable X. The quantities

µ̂{v=x} =
1

N

N∑
i=1

φ{v=x}(x
i),

µ̂{(v,w)=(x,y)} =
1

N

N∑
i=1

φ{(v,w)=(x,y)}(x
i)

are known as empirical moments and they reflect the
empirical frequency estimates of the corresponding
events. We say that a given probability mass function

p with base measure ν and expectations Ep
[
φ{xα}(x)

]
is locally consistent with data D if and only if p satis-
fies the moment matching condition

Ep
[
φ{xα}(x)

]
= µ̂{xα},∀α ∈ V ∪ E,

i.e. the density p is consistent with the data w.r.t. the
empirical moments. This problem is underdetermined,
in that there are many densities p that are consistent
with the data, so that we need a principle for choosing
among them. The principle of maximum entropy is to
choose, from among the densities consistent with the
data, the densities p∗ whose Shannon entropy H(p) is
maximal. It can be shown that the optimal solution
p∗ takes the form of an exponential family of densities

pθ(X = x) = exp[〈θ,φ(x)〉 −A(θ)],

parametrized by a vector θ ∈ Rd. Note that the pa-
rameter vector θ and the sufficient statistics vector
φ(x) have the same length d. The term A(θ) is called
the log partition function,

A(θ) := log

∫
X

exp[〈θ,φ(x)〉]ν(dx),

which is defined with respect to a reference measure
dν such that P [X ∈ S] =

∫
S
pθ(x)ν(dx) for any mea-

surable set S. Expanding φ(x) by means of (1) re-
veals the usual density of pairwise undirected graph-
ical models, also known as pairwise Markov random
field

pθ(X = x) =
1

Ψ(θ)

∏
v∈V

ψv(x)
∏

(v,w)∈E

ψ(v,w)(x).

Here, Ψ = expA is the cumulant-generating function
of pθ, and ψα are the so-called potential functions.

If the data set contains solely fully observed in-
stances, the parameters may be estimated by the max-
imum likelihood principle. The estimation of parame-
ters in the case of partially unobserved data is a chal-
lenging topic on its own. Here, we assume that the
data set D contains only fully observed instances. The
likelihood L and the average log-likelihood ` of param-
eters θ given a set of i.i.d. data D are defined as

L(θ;D) :=

N∏
i=1

pθ(xi) and

`(θ;D) :=
1

N

N∑
i=1

log pθ(xi) = 〈θ, µ̂〉 −A(θ).

The latter is usually maximized due to numerical in-
conveniences of L.

2 From Linear Chains to
Spatio-Temporal Models

Sequential undirected graphical models, also known as
linear chains, are a popular method in the natural lan-
guage processing community [5, 16]. There, consec-
utive words or corresponding word features are con-
nected to a sequence of labels that reflects an under-
lying domain of interest like entities or part of speech
tags. If we consider a sensor network G that generates
measurements over space as a word, then it would be
appealing to think of the instances of G at different
timepoints, like words in a sentence, to form a tempo-
ral chain G1 − G2 − · · · − GT . We will now present
a formalization of this idea followed by some obvious
drawbacks. Afterwards we will discuss how to tackle
those drawbacks and derive a tractable class of gen-
erative graphical models for the spatio-temporal state
prediction task.

We first define the part of the graph corresponding
to the time t as the snapshot graph Gt = (Vt, Et), for
t = 1, 2, . . . , T . Each snapshot graph Gt replicates a
given spatial graph G0 = (V0, E0), which represents
the underlying physical placement of sensors, i.e., the
spatial structure of random variables that does not
change over time. We also define the set of spatio-
temporal edges Et−1;t ⊂ Vt−1 × Vt for t = 2, . . . , T
and E0;1 = ∅, that represent dependencies between
adjacent snapshot graphs Gt−1 and Gt, assuming a
Markov property among snapshots, so that Et;t+h = ∅
whenever h > 1 for any t. Note that the actual time
gap between any two time frames t and t + 1 can be
chosen arbitrarily.

The entire graph, denoted by G, consists of the
snapshot graphs Gt stacked in order for time frames
t = 1, 2, . . . , T and the temporal edges connecting
them: G := (V,E) for V := ∪Tt=1Vt and E :=
∪Tt=1{Et ∪ Et−1;t}.

The spatial graph G0 and the sizes of the vertex
state spaces Xv determine the number of model pa-
rameters d. In order to compute this quantity, we
consider the exemplary construction of G. from G0.
First, all vertices v and all edges (u, v) from G0 are
copied exactly T times and added to G = (V,E),
whereas each copy is indexed by time t, i.e. v ∈ V0 ⇒
vt ∈ V, 1 ≤ t ≤ T and likewise for the edges. Then,
for each vertex vt ∈ V with t ≤ T − 1, a tempo-
ral edge (vt, vt+1) is added to G. Finally, for each
edge (vt, ut) ∈ E with t ≤ T − 1, the two spatio-
temporal edges (vt, ut+1) and (vt+1, ut) are also added
to G. The number of parameters per vertex v is |Xv|
and accordingly |Xv||Xu| per edge (v, u). If we assume
that all vertices v, u ∈ V share a common state space
and that state spaces do not change over time, i.e.
Xvt = Xut′ ,∀v, u ∈ V, 1 ≤ t, t′ ≤ T , the total number
of parameters is

d = T |V0| |Xvt |+
[
(T − 1)(|V0|+ 3|E0|) + |E0|

]
|Xvt |2

with some arbitrary but fixed vertex vt. Note that the
last two assumptions are only needed to simplify the
computation of d, the spatio temporal random field
that is described in the following section is not re-
stricted by any of these assumptions.

This model now truly expresses temporal and spa-
tial relations between all locations and points in time
for all features. However, the memory requirements of



such models are quite high due to the large problem di-
mension. Even loading or sending models may cause
issues when mobile devices are considered as a plat-
form. Furthermore, the training does not scale well
because of stepsize adaption techniques that are based
on sequential (i.e., non-parallel) algorithms.

The derivation and empirical evaluation of the com-
pressible representation and distributed estimation
can be found in [14].
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