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Abstract

In this work, we approach the topic of ef-
ficient subgroup mining with interestingness
measures, which also take statistics on gener-
alizations of the subgroup into account. For
this setting we develop new optimistic esti-
mate bounds, which allow to safely prune
large parts of the search space. In contrast to
previous approaches, the bounds are not only
based on the anti-monotonicity of the number
of covered instances of a pattern, but also on
the number of instances, by which a pattern
differs in comparison to its generalizations.
Incorporating these bounds in an efficient al-
gorithms leads to runtime improvements of
up to an order of magnitude.

1 Problem Setting
Subgroup discovery [5] is a key technique for descrip-
tive data mining. It aims at identifying descrip-
tions of subsets of the data that show an interest-
ing behavior with respect to a certain target con-
cept. This is accomplished by using an interesting-
ness measure to assign a score to all candidate pat-
terns in the search space of all conjunctive descrip-
tions. Traditional measures are based on the statis-
tics of the evaluated subgroup and the entire dataset.
In particular, the most popular family of interest-
ingness measures weights between the number of in-
stances covered by the subgroup, and the difference
of the target share (or target mean value in a nu-
meric target setting) in the subgroup a the target
share in the total population. In recent research [1;
2; 3] these measure have been adapted to obtain more
interesting and less redundant results: Generalization-
aware measures replace the comparison with the tar-
get share (mean value) in the overall dataset with a
comparison to the maximum target share of all gen-
eralizations of the subgroup. E.g., to compute the in-
terestingness score of the subgroup A ∧ B, the target
share for the three subgroup patterns ∅, A, B are com-
pared to the target share of A ∧ B. In this paper, we
focus on the most important families of interestingness
measures for nominal and numeric target concepts in
this direction:

rabin(P ) = iaP · (τP − max
H⊂P

τH), a ∈ [0; 1]

ranum(P ) = iaP · (µP − max
H⊂P

µH), a ∈ [0; 1]

Here, iP is the number of instances covered by the
subgroup P , τP (µP ) is the target share (target mean

value) in the subgroup P and max
H⊂P

τH(max
H⊂P

µH) is the

maximum target share (target mean value) in all gen-
eralizations of P . a is an user-specified parameter that
allows to weight between the two factors.

This paper does not argue about the usefulness of
these adaptations, but focuses on efficient subgroup
mining in this setting. In particular, we propose novel,
tighter optimistic estimate bounds [5] that allow to
prune parts of the search space without losing the op-
timality of the results: The basic idea of optimistic
estimates the following: if one can guarantee that no
specialization of the currently evaluated pattern will
have an interestingness score which is good enough to
include the respective pattern into the result set then
we can safely omit these patterns from the search. In
this regard, we aim at the strictest bounds possible to
reduce the remaining search space and thus to speed
up the search process.

2 Difference-based estimates

Previous approaches to compute optimstic estimates
are almost exclusively based on the anti-monotonicity
of covered (positive) instances: For instance, if the
subgroup A covers 10 positive examples, then each
specialization of A, e.g., A ∧X covers also at most 10
positive examples. In addition to the statistics of the
currently evaluated subgroup, our approach also takes
into account statistics of generalizations in order to to
determine the interestingness score. This additional
information is used to determine tighter optimistic es-
timates.

For this end, the following lemma is proposed:

Lemma. Let P = A ∧ B be any pattern with A,B
potentially being a conjunction of patterns themselves
and B 6= ∅. Then for any specialization S ⊃ P
there exists a generalization γ(S) ⊂ S, such that
∆(γ(S), S) ⊆ ∆(A,B).

The lemma exploits, what can be described as an
anti-monotonicity of differences in comparison to gen-
eralizations. For example, assume there are 5 in-
stances, which are covered by U , but not by U ∧ V .
Then the lemma guarantees, that for each specializa-
tion S = U ∧V ∧X ∧ . . .∧Y there exists a generaliza-
tion, such that the difference between this generaliza-
tion and S is also at most 5 instances (cf. also [4]).

Now, consider the interestingness score of such a
specialization S: If S covers only few instances, then
by the definition of the used interestingness measures,
S is of low interestingness. On the other hand, if S
covers more instances, the increase of the target share



d 3 4 5 6
pruning dpb std dpb std dpb std dpb std
adults 1.0 1.1 0.9 1.8 1.6 8.1 1.7 30.2
audiology 0.1 0.1 0.1 2.8 0.6 51.7 - -
census-kdd 17.9 20.6 37.2 99.8 107.9 2954.3 267.5 -
colic 0.1 0.2 0.3 1.1 0.4 5.1 0.4 16.4
credit-a 0.1 0.1 0.3 0.7 1.2 3.6 1.2 12.9
credit-g 0.2 0.2 1.5 4.0 4.0 35.2 7.0 -
diabetes 0.1 0.1 0.5 1.3 1.2 9.3 2.0 67.1
hepatitis <0.1 0.1 0.2 0.6 0.8 3.3 0.3 11.9
hypothyroid 0.1 0.2 0.5 2.7 1.7 39.0 - -
spammer 1.3 1.6 5.7 15.5 29.3 172.2 88.3 -
vehicle 1.0 1.3 4.8 57.8 15.6 - - -

Table 1: Runtime comparison (in s) of the base algorithm with traditional pruning based on the positives (std)
and the novel algorithm with additional difference-based pruning (dbp) using different maximum numbers d of
describing selectors in a pattern. As quality functions the generalization-aware mean test r0.5

bin was used. ”-”
indicates that the algorithm did not finish due to lack of memory.

in comparison to its generalization γ(S) is limited by
the lemma, since it states that γ(S) only covers at most
5 more negative instances than S. As a consequence
S is also not interesting in this case.

These considerations are exploited in formal theo-
rems, which allow to determine optimistic estimates
based on the difference of instances in generalizations:

Theorem. Consider the pattern P with pP positive
instances. P ′ ⊆ P is either P itself or one of its
generalizations and P ′′ ⊂ P ′ a generalization of P ′.
Let n∆ = nP ′′ − nP ′ be the difference in coverage of
negative instances between these patterns. Then, an
optimistic estimate of P for rabin is given by:

oerabin(P ) =


pP ·n∆

pP +n∆
, if a = 1

n∆

1+n∆
, if a = 0

p̂a·n∆

p̂+n∆
, with p̂ = min(a·n∆

1−a , pP ), else

This theorem provides optimistic estimate bounds,
which are tight (low), if either (1) the number positives
covered by a subgroup is low, or (2) if the difference of
negatives between the subgroup and a generalization is
low, or (3) if the difference of negatives between a gen-
eralization of the subgroup and another generalization
of this generalization is low.

Another theorem (not shown in this abstract) intro-
duces optimistic estimate bounds for the setting with a
numeric target setting and mean-based generalization-
aware interestingness measures ranum. These bounds
also exploit the difference of the minimum target value
removed in a specialization step to the maximum tar-
get value remaining in the subgroup.

3 Algorithm

Although the proposed optimistic estimate bounds can
in principal be applied with any search strategy, we fo-
cus in this work on adapting Apriori, which is also em-
ployed by the current state-of-the-art algorithm of this
problem setting [1]. For each candidate pattern addi-
tional information is stored, e.g., the minimum number
of negatives in a generalization, the minimum differ-
ence in coverage between two generalizations and the
maximum target share in a generalization of this pat-
tern. The information is propagated efficiently during
candidate generation and updated during the evalua-
tion of the subgroup.

4 Evaluations
The effectiveness of the difference-based optimistic es-
timate bounds and its incorporation in an algorithm
was evaluated in several series of experiments. Exem-
plary results are shown in Table 1. It can be observed
that the novel approach improves the runtime often of
more than an order of magnitude. Further investiga-
tion showed that the runtime improvement is particu-
larly large, if the dataset contains many selectors that
cover large parts of the dataset (see e.g., the audiology
dataset). In can also be seen, that out-of-memory er-
rors occur less often using the improved bounds, since
less candidates are generated.

The full paper includes formal proofs, a
more detailed algorithm description and more
experimental results. It has been published as:
Florian Lemmerich, Martin Becker, Frank
Puppe: Difference-Based Estimates for
Generalization-Aware Subgroup Discovery.
In: Hendrik Blockeel, Kristian Kersting,
Siegfried Nijssen, Filip Zelezný (Eds.): Pro-
ceedings of ECML/PKDD 2013, Part III,
pages 288-303.
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