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Abstract
Language Modelling (LM) and TF-IDF are
two retrieval models with different foundations.
There have been efforts aiming at establish-
ing the relationship between these models, and
whether one includes the other. Whether their
combination could yield a third and better model
is an open research question. This paper revisits
the foundations of LM and TF-IDF and explores
how these models’ bare structures relate and how
these structures can be combined. We begin
with the premise that TF-IDF is the P (d|q)/P (d)
side of retrieval, which complements the com-
mon view that LM is P (q|d)/P (q). Next, a
hybrid framework based on the decomposition
of the product of the two sides, P (d|q)/P (d) ·
P (q|d)/P (q), is developed. This leads to the
D2Q2 family of models, which joins the inner
components of LM and TF-IDF instead of com-
bining their scores. This paper provides new
insights into the relationship between LM and
TF-IDF, and experimental results show that the
D2Q2 models perform comparably to competi-
tive baselines.

1 Introduction
There has been significant research into how to combine
retrieval models and how to relate them. Approaches such
as [Bartell et al., 1994; Croft et al., 1990; Lee, ] have shown
the importance of combining different retrieval models
through, for example, score fusion. Other approaches have
proposed how to analyse different retrieval models’ com-
ponents and compare them [Fang and Zhai, 2005]. Both
research directions have furthered the development of more
effective models.

Two types of retrieval models that have been closely
analysed and compared are language modelling (LM), and
those based on term frequency (TF) and inverse document
frequency (IDF). These models have different foundations.
Variants of the former are based on the mixtures (smooth-
ing) [Zhai and Lafferty, 2004; Zaragoza et al., 2003].
TF-IDF models differ with regard to the TF quantifica-
tion and normalisations employed [Robertson et al., 1994;
Singhal et al., 1996; He and Ounis, 2005; Kwok, 1996;
Taylor et al., 2006]. Efforts to establish the relationship
between these models and whether or not the former in-
cludes the features of the latter include [Zhai and Lafferty,
2001]. By examining the foundations of these retrieval
models we learn that LM directly derives from the condi-
tional probability P (q|d) (q is the query, d is the document)
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Figure 1: The D2Q2 framework.

[Ponte and Croft, 1998; Hiemstra, 2000; Lafferty and Zhai,
2003]. TF-IDF, on the other hand, is viewed as a heuristic
model [Salton et al., 1976; Croft, 2000; Metzler and Croft,
2004], and its probabilistic and information-theoretic inter-
pretation is an ongoing debate [Church and Gale, 1995a;
Church and Gale, 1995b; Aizawa, 2003; Robertson, 2004;
Wu et al., 2008; Roelleke and Wang, 2008]. Drawing from
and furthering this type of deeper analysis allows us to bet-
ter understand and relate these models’ components.

This paper contributes several theoretical findings. We
showcase a side-by-side derivation of LM and TF-IDF that
helps to clarify the relationship between LM and TF-IDF.
This derivation goes so far as to show that, just as LM has
a TF-IDF nature, before the decomposition of document
and query probabilities, TF-IDF has an LM nature as well.
Next ,we develop a hybrid framework, leading to the D2Q2
family of models, that joins the inner components of LM
and TF-IDF.

Figure 1 outlines the connections between D2Q2, its two
subcomponents D2 and Q2, LM and TF-IDF. Essentially,
D2Q2 rests on two ways to decompose the document-query
independence measure DQI := P (d, q)/(P (d) · P (q)).
D2Q2 combines the inner parts of TF-IDF and LM, try-
ing to push the best of each into a hybrid model. Con-
tinuing with the derivation, the inner components of LM
(P (q|d)/P (q) = D2) and TF-IDF (P (d|q)/P (d) = Q2)
are combined. This provides an integrative framework that
incorporates the characteristics of both LM and TF-IDF.
Moreover, the instances of this framework, D2Q2, are re-
trieval models in their own right, which can be compared
with the traditional models LM and TF-IDF. Interestingly,
although D2Q2 “combines” models, it is different from the
aforementioned fusion approaches. While fusion combines
scores, D2Q2 incorporates the characteristics of both LM
and TF-IDF into one probabilistic framework, and there-
fore we refer to D2Q2 as a “hybrid” model, as opposed to
a model that fuses scores.

This paper is structured as follows. Section 2 consoli-
dates the preliminaries necessary to appreciate the contri-



bution of this paper. Section 3 shows the relationship be-
tween LM and D2Q2. More precisely, it shows that LM
corresponds to D2. The relationship between TF-IDF and
D2Q2 is shown in Section 4 (TF-IDF corresponds to Q2).
Section 5 discusses the relationship between LM and TF-
IDF. From these follows in Section 6 the description of the
D2Q2 framework, a theoretically sound combination of the
LM and TF-IDF models into a family of hybrid models.
Section 7 shows that the D2Q2 retrieval models perform
comparably to competitive baselines.

2 Background & Preliminaries
2.1 LM and TF-IDF
We present the LM and TF-IDF models1. Note that TF-
IDF is also referred to as a weighting scheme in the con-
text of the vector space model. This paper emphasises that
TF-IDF is a retrieval model at the same level as LM, as in
[Hiemstra, 2000].

Let d be a document, q a query, c a collection and t a
term. The standard definition of the retrieval status value
associated with the LM model can be written as follows:

RSVLM(d, q, c) :=∑
t∈q

TF(t, q) · log
(

(1−λd)+λd ·
P (t|d)
P (t|c)

)
(1)

TF(t, q) is the within-query term frequency, P (t|d) is the
within-document (foreground) term probability, P (t|c) is
the collection-wide (background) term probability, and λd

is the document-dependent mixture parameter.
In the Dirichlet-based LM [Zhai and Lafferty, 2004], λd

is proportional to the document length. Let λd := dl
dl+µ ,

where dl is the document length and µ is a parameter. This
setting of λd reflects trust in probabilities estimated from
long documents.

RSVDirich-LM(d, q, c) :=∑
t∈q

TF(t, q)·log
(

µ

µ+dl
+

dl
dl+µ

·P (t|d)
P (t|c)

)
(2)

The retrieval status value associated with the TF-IDF
model can be written as follows:

RSVTF-IDF(d, q, c) :=∑
t∈d∩q

TF(t, d) · TF(t, q) · IDF(t, c) (3)

TF(t, d) is the within-document term frequency quantifi-
cation; TF(t, q) is for the query. For independence of
term occurrences, the setting is TF(t, d) := tfd where tfd
is the total within-document term frequency. This setting
is known to be inferior to TF(t, d) := tfd/(tfd +Kd), the
setting known from BM25 [Robertson et al., 1994], where
Kd is a normalisation factor proportional to the pivoted
document length, pivdl(c) := dl/avgdl(c). We refer to
this TF quantification as BM25-TF, and we also denote
it as TFK(t, d), to make explicit the parameter K. For
IDF, the common setting is IDF(t, c) := −log PD(t|c),
where PD(t|c) = df(t, c)/ND(c) is the Document-based
term probability (based on the set of Documents, hence,
the subscript capital D), and df(t, c) is the collection-wide
document frequency of term t.

1Similar investigation was carried out for the BM25 model;
however in this paper we focus on LM and TF-IDF.

Note that IDF is based on a Document-based term prob-
ability (P (t|c) :=PD(t|c)), whereas LM is Location-based
(P (t|c) := PL(t|c)) [Hiemstra, 2000]. We return to these
two event spaces (Documents vs. Locations) in Section 4.5,
where an essential assumption is made to establish the con-
nection between TF-IDF and D2Q2.

2.2 Document-Query (In)dependence (DQI)
An common measure in probabilistic models is the
document-query independence, formalised as follows:

DQI(d, q) :=
P (d, q)

P (d) · P (q)
(4)

The DQI measures the document-query (in)dependence.
DQI=1 means that document and query intersect as if they
were independent; DQI < 1 means that the intersection is
less; and DQI>1 means that the intersect is greater than if
they were independent.

The DQI is a concept related to information theory.
It is the inner component of the “mutual information”
MI(X, Y ) :=

∑
x,y P (x, y) · log P (x,y)

P (x)·P (y) . The DQI is the
argument of the log. The relationship of DQI to MI (and
hence to conditional entropy) backs DQI as an information-
theoretic measure [Gale and Church, 1991]. It also shows
the theoretical justification of D2Q2, which leverages the
DQI measure in its derivation. Lastly, DQI is related to ex-
haustiveness and specificity (another foundation of D2Q2).

2.3 Exhaustiveness and Specificity
The product P (q|d) · P (d|q) can be interpreted as ex-
haustiveness · specificity, where P (q|d) is set to measure
exhaustiveness and P (d|q) specificity. These concepts
were used in logic-based retrieval frameworks [Nie, 1992;
Wong and Yao, 1995]. We retain the idea, and define an
exhaustiveness-specificity measure:

ES(d, q) := P (q|d) · P (d|q) (5)

From this definition, it immediately follows the relation-
ship between ES and DQI, which can be expressed in as
follows:

ES(d, q) =
P (d, q) · P (d, q)

P (d) · P (q)
= P (d, q) · DQI(d, q) (6)

The role of ES(d, q) and DQI(d, q) is explained in Sec-
tion 5. Mainly, the combination of exhaustiveness and
specificity, plus the meaning of DQI, give a meaning to
D2Q2.

To estimate P (q|d) and P (d|q), the query q and doc-
ument d are viewed as sequences of independent term
events. However, the independence assumption can be seen
as sub-optimal. Hence, many approaches such as [Gao et
al., 2004; Hou et al., 2011] capture dependence when es-
timating the document and query probabilities. Similarly,
D2Q2 considers dependence by using the notion of semi-
subsumed events. The next section reviews this assumption
and relates it to the BM25-TF; this justifies why the BM25-
TF is later used in D2Q2.

2.4 Semi-subsumed Events
The superior retrieval quality achieved by the BM25-TF is
evidence for the dependence of the multiple occurrences
of the same term [Robertson et al., 1994]. For instance,
[Wu and Roelleke, 2009] pointed out that the BM25-TF



Figure 2: Independent and Semi-subsumed.

can be explained by assuming term occurrences to be semi-
subsumed events, an important concept for making the pro-
posed hybrid D2Q2 framework a with solid and probabilis-
tic foundations.

In general, the decomposition of event d into term events
can be written as:

P (d|q) =
∏
t∈d

P (t|q)TF(t,d) (7)

The setting of TF(t, d) reflects probabilistic assumptions:

TF(t, d) :=

{ tfd independent
2 · tfd/(tfd + 1) semi-subsumed
1 subsumed

TF(t, d)= tfd (total term frequency) views the occurrences
as independent, whereas TF(t, d) = 1 views them as sub-
sumed events. Semi-subsumed is between the two. Fig-
ure 2 illustrates the computation of P (e1, e2) for the case
of independent and semi-subsumed events. For IR, event ei

corresponds to the multiple occurrence of a term ti. For in-
dependent events, we obtain P (e1, e2) = 0.32 = 0.09; and
for semi-subsumed events, P (e1, e2) = 0.32·2/(2+1) ≈ 0.2.
The conjunctive probability of semi-subsumed events is
larger than that of independent events. The success of the
BM25-TF proves that the multiple occurrences of a term
are not independent. The notion of semi-subsumed events
assigns a sound semantics to the BM25-TF, making it a
well-defined ingredient of D2Q2.

We have discussed the preliminaries of LM and TF-
IDF, document-query-(in)dependence (DQI), exhaustive-
ness and specificity, and semi-subsumed events. The next
two sections use these to show the connection between LM
and D2, and TF-IDF and Q2.

3 LM as the D2 side of D2Q2
We demonstrate that LM corresponds to the D2 side of
D2Q2. We start with reviewing the probabilistic roots of
LM as explored in [Hiemstra, 2000; Zhai and Lafferty,
2004]. The notation D2Q stands for P (q|d), and D2 for
P (q|d)/P (q), which we denote as D2Q/Q.

D2Q := P (q|d), D2 := D2Q /Q :=
P (q|d)
P (q)

(8)

This section addresses the estimation of P (q|d), or more
precisely, of P (q|d, c), where the notation makes explicit
the collection “c” used to estimate the background term
probability.

3.1 Term (In)dependence Assumption
To estimate P (q|d, c), the query is decomposed into terms:

P (q|d, c) =
∏
t∈q

P (t|d, c)TF(t,q) (9)

The conditional d, c makes it explicit that the query and
term probabilities depend on both the document d (fore-
ground) and the collection c (background). The setting of
TF reflects two common assumptions made for term events:

TF(t, q) :=
{

tfq independent
1 subsumed (10)

For P (q|d, c), and therefore, D2Q, which assumption is
followed is not crucial since often tfq = 1 for short queries.
Next we discuss the estimation of P (t|d, c).

3.2 Term Probability Mixture
P (t|d, c) is estimated using a mixture of foreground and
background probabilities, essentially to avoid the so-called
“zero-probability problem” [Zhai and Lafferty, 2004]. The
within-document term probability P (t|d) is mixed with the
collection term probability P (t|c) to obtain P (t|d, c):

P (t|d, c) = λd · P (t|d) + (1− λd) · P (t|c) (11)

The parameter λd may be set constant (Jelinek/Mercer mix-
ture, for example, λd ≈ 0.8, [Hiemstra, 2000]). Alter-
natively, λd := dl

dl+µ (Dirichlet mixture, dl is document
length) means that the estimate of P (t|d) is more trusted
for longer documents.

We discussed the estimation of P (q|d, c), including the
term (in)dependence assumption, leading to the formula-
tion of D2Q. We also referred to D2 as D2Q/Q, that is D2
is equal to D2Q normalised by Q. We discuss the normali-
sation step next, which leads us to the formulation of D2.

3.3 Normalisation
Applying Equation 9 to Equation 8, making the collection
c explicit, and decomposing P (q|c) in the same way as
P (q|d, c) (Equation 9), D2 can be decomposed as follows:

D2 = D2Q /Q =
P (q|d, c)
P (q|c)

=
∏
t∈q

(
P (t|d, c)
P (t|c)

)TF(t,q)

(12)
Using the term probability mixture estimation of P (t|d, c)
(Equation 11), we arrive at the following form of D2, which
we denote D2-linear, where the subscript indicates the type
of the mixture (here a linear mixture):

D2linear :=
∏
t∈q

[
(1− λd) +

λd · P (t|d)
P (t|c)

]TF(t,q)

(13)

We define a second form of D2, denoted D2-extreme, to
capture the case of λd =1 if t ∈ d, and λd =0 otherwise:

D2extreme :=
∏

t∈d∩q

[
P (t|d)
P (t|c)

]TF(t,q)

(14)

We discuss in more detail the extreme mixture when we
present Q2, as it establishes the relationship between Q2
and TF-IDF.



3.4 Retrieval Status Value
For each of the D2 forms above, we define an associated
retrieval status value (RSV), which can serve as a ranking
function. Essentially, the RSV’s apply the logarithm.

RSVD2-linear(d, q, c) := log D2linear (15)

RSVD2-extreme(d, q, c) := log D2extreme (16)
In decomposed form, the RSV’s become:

RSVD2-linear(d, q, c)=∑
t∈d∩q

TF(t, q) · log
(

(1−λd) + λd ·
P (t|d)
P (t|c)

)
(17)

RSVD2-extreme(d, q, c) =
∑

t∈d∩q

TF(t, q) · log
P (t|d)
P (t|c)

(18)

We next make the connection between LM and D2 explicit,
namely that D2=LM for the linear form of LM.

3.5 D2 and LM
The following theorem (proof omitted) shows the exact re-
lationship between D2 (the linear form) and LM:
Theorem 1 D2-linear is an interpretation of LM:

RSVLM(d, q, c) = RSVD2-linear(d, q, c) (19)

Showing that D2=LM does not reveal a new result; the es-
timation of D2 (leading to D2-linear) was carefully chosen
to lead to LM. We nonetheless presented the above steps to
prepare for the more complex case demonstrating the rela-
tionship between Q2 and TF-IDF.

4 TF-IDF as the Q2 side of D2Q2
We have shown that LM is the D2 := P (q|d)/P (q) side
of D2Q2. Next, we show that TF-IDF is the Q2 :=
P (d|q)/P (d) side of D2Q2. This section on TF-IDF is
organised analogously to the previous one on LM. For TF-
IDF, P (d|q) is the starting point, from where we mirror the
steps followed in Section 3. Q2D stands for P (d|q), Q2 for
P (d|q)/P (d), where Q2 is Q2D normalised by D denoted
Q2D/D.

Q2D := P (d|q), Q2 := Q2D /D :=
P (d|q)
P (d)

(20)

Equation 20 (Q2D) corresponds to Equation 8 (D2Q).
Next, we estimate P (d|q).

4.1 Term (In)dependence Assumption
Again we explicate the collection c. To estimate P (d|q, c),
the document is decomposed into terms:

P (d|q, c) =
∏
t∈d

P (t|q, c)TF(t,d) (21)

Equation 21 corresponds to Equation 9 (P (q|d, c)). There
are three assumptions encoded in the TF quantification:

TF(t, d) :=

{ tfd independent
2 · tfd/(tfd + Kd) semi-subsumed
1 subsumed

(22)
The semi-subsumed assumption (BM25-TF) led to supe-
rior retrieval performance [Robertson et al., 1994]. The
parameter Kd is proportional to the pivoted document
length pivdl = dl/avgdl. The parameter adjusts the semi-
subsumption assumption.

4.2 Term Probability Mixture
We again use a mixture model to estimate P (t|q, c):

P (t|q, c) = λq · P (t|q) + (1− λq) · P (t|c) (23)

Equation 23 corresponds to Equation 11 (P (t|d, c)).

4.3 Normalisation
Normalisation leads to Q2 (as Q2D/D).

Q2 = Q2D/D =
P (d|q, c)
P (d|c)

=
∏
t∈d

(
P (t|q, c)
P (t|c)

)TF(t,d)

(24)
Equation 24 corresponds to Equation 12 (D2). As for D2,
we define two forms of Q2, linear and extreme. Q2-linear
derives directly from applying the term probability mixture
to estimate P (t|q, c).

Q2linear :=
∏
t∈d

[
(1− λq) +

λq · P (t|q)
P (t|c)

]TF(t,d)

(25)

Equation 25 corresponds to Equation 13 (D2-linear).
The extreme mixture comes from setting λq =1 if t ∈ q,

and λq =0 otherwise.

Q2extreme :=
∏

t∈d∩q

(
P (t|q)
P (t|c)

)TF(t,d)

(26)

Equation 26 corresponds to Equation 14 (D2-extreme).
Section 4.6 will show that it is the extreme form of Q2 that
is related to TF-IDF.

4.4 Retrieval Status Value
We take the log to define the corresponding retrieval status
value for both forms of Q2, and obtain the following:

RSVQ2-linear(d, q, c)=∑
t∈d∩q

TF(t, d) · log
(

(1−λq) + λq ·
P (t|q)
P (t|c)

)
(27)

RSVQ2-extreme(d, q, c) =
∑

t∈d∩q

TF(t, d) · log
P (t|q)
P (t|c)

(28)

Note the symmetry between Equation 27 and 17, and
between Equation 28 and 18.

We continue with Q2 -extreme, showing that it corre-
sponds to TF-IDF. Equation 28 has a factor 1/P (t|c), the
inverse term probability, which reminds of IDF(t, c) :=
log (1/PD(t|c)), which we recall is based on the space of
Documents. However, all the probabilistic estimates so far
are based on the space of Locations (terms occur at loca-
tions). The next section reviews the assumption that allows
to transfer the Location-based probability PL(t|c) into the
Document-based probability PD(t|c). The transformation
between event spaces is necessary to demonstrate since it
is one of the pillars between Q2 and TF-IDF.

4.5 Query Term Probability Assumption
We review first the query term probability assumption
discussed in [Roelleke and Wang, 2006], which al-
lows the transfer of the Location-based probabilities,
PL(t|q)/PL(t|c) in Equation 28, to the Document-based
probabilities, 1/PD(t|c).

To illustrate the difference between the two spaces, Doc-
uments and Locations, consider the following example.



Let term t occur in tfc = nL(t, c) = 1, 000 Locations of
collection c. Let it occur in df(t, c) = nD(t, c) = 200
Documents of collection c. The notation conforms with
traditional formulation, and indicates the duality between
counting Locations and counting Documents. Then, the
average (expected) within-document term frequency is:
avgtf(t, c) = tfc/df(t, c) = 1, 000/200 = 5. Now let the
collection c have NL(c)=109 Locations, and ND(c)=106

Documents. The Location-based probability is PL(t|c) =
nL(t, c)/NL(c) = 1, 000/109, the Document-based one is
PD(t|c)=nD(t, c)/ND(c)=200/106. The average docu-
ment length is avgdl(c)=NL(c)/ND(c)=103.

Then, for the fraction of term probabilities, we obtain:

PL(t|c)
PD(t|c)

=
nL(t, c)/NL(c)
nD(t, c)/ND(c)

=
avgtf(t, c)
avgdl(c)

(29)

This equation has been referred to as Poisson bridge
[Roelleke and Wang, 2006], since it is related to a Poisson
probability (we do not need to detail for this paper).

This relationship between Location-based and
Document-based term probability enables us to establish
the relationship between Q2 and TF-IDF. The relation-
ship is based on the following query term probability
assumption:

PL(t|q) = avgtf(t, c)/avgdl(c) (30)

What does this assumption express? In the example above,
the average document length is avgdl(c) = 1, 000 and the
average within-document term frequency is avgtf(t, c) = 5;
therefore, PL(t|q) = 5/1, 000. With this assumption
bursty terms obtain higher probabilities than less bursty
ones: the query term probability is proportional to the
burstiness of the term, a reasonable assumption to make.

This assumption leads to PL(t|c) = PL(t|q) · PD(t|c).
In turn, this transform the fraction PL(t|q)/PL(t|c) (see
Equation 28) into an expression based on the Document-
based term probability as in IDF:

PL(t|q)
PL(t|c)

=
PL(t|q)

PL(t|q) · PD(t|c)
=

1
PD(t|c)

(31)

This establishes the relationship between Q2 and TF-IDF.

log Q2extreme =
∑

t∈d∩q

TF(t, d) · log
1

PD(t|c)
(32)

Next we give the formal proof that shows Q2 (extreme
form) is the probabilistic interpretation of TF-IDF.

4.6 Q2 and TF-IDF
In Section 3.5, the relationship between D2 and LM was
a direct one. The relationship between Q2 and TF-IDF is
less direct, as it relies as above shown on the “query term
probability assumption”. In addition, whereas showing the
relationship between D2 and LM, i.e. LM=D2, relied on a
linear mixture, showing the relationship between TF-IDF
and Q2, i.e. Q2=TF-IDF, relies on the extreme mixture.

Given the query term probability assumption, the rela-
tionship between Q2 and TF-IDF is expressed as follows.

Theorem 2 Q2extreme is an interpretation of TF-IDF, if
PL(t|q) = PL(t|c)/PD(t|c):

PL(t|q) =
PL(t|c)
PD(t|c)

=⇒

RSVTF-IDF(d, q, c) = RSVQ2extreme
(d, q, c) (33)

Proof Inserting Equation 3 for RSVTF-IDF and Equation 28
for RSVQ2extreme

yields:∑
t

TF(t, d)·TF(t, q)·IDF(t, c) =
∑

t

TF(t, d)·log
PL(t|q)
PL(t|c)

The assumption for PL(t|q) yields:

PL(t|q)
PL(t|c)

=
PL(t|c)

PD(t|c) · PL(t|c)
=

1
PD(t|c)

Therefore, Q2extreme is an interpretation of TF-IDF (for a
binary query TF quantification TF(t, q)).

We have shown that D2linear corresponds to LM, and that
Q2extreme corresponds to TF-IDF. In the next section, we
focus on the relationship between D2 and Q2.

5 On the relationship between D2 (LM) and
Q2 (TF-IDF)

Section 2.2 introduced the Document-Query
(In)dependence (DQI) measure: DQI(d, q) :=
P (d, q)/(P (d) · P (q)). From the definitions of D2
and Q2, we obtain that D2 = DQI = Q2. This means that
D2 and Q2 are equivalent:

D2 =
P (q|d, c)
P (q|c)

=
P (d, q|c)

P (d|c) · P (q|c)
=

P (d|q, c)
P (d|c)

= Q2 (34)

In other words, before decomposing events into term events
and until term (in)dependence assumption made, D2 and
Q2 measure the same, that is, LM and TF-IDF aim at mea-
suring the same. The decomposition of d and q into terms
breaks the equivalence of D2 and Q2.∑
t∈q

TF(t, q)·log
P (t|d, c)
P (t|c)

6=
∑
t∈d

TF(t, d)·log
P (t|q, c)
P (t|c)

(35)

For D2, P (t|d, c) is estimated as the linear mixture λd ·
P (t|d) + (1 − λd) · P (t|c), establishing that “D2=LM”.
For Q2, an extreme mixture for P (t|q, c) is applied and
we assumed that PL(t|q)=PL(t|c)/PD(t|c), which led to
“Q2=TF-IDF”.

The following inequality stresses the difference between
LM (D2-linear) and TF-IDF (Q2-extreme).

TF(t, q)·log
[
(1−λd)+λd ·

PL(t|d)
PL(t|c)

]
6= TF(t, d)·log

1
PD(t|c)

We have shown the steps from the equality D2=Q2=DQI
that holds before decomposition into term events to
the inequality LM 6=TF-IDF that comes from the term
(in)dependence assumption. This not only shows a rela-
tionship between LM and TF-IDF, but explains what con-
nects them, and what separates them.

6 The D2Q2 Framework
We have shown the relationships between LM and D2, be-
tween TF-IDF and Q2, between D2 and Q2, and between
LM and TF-IDF. The preliminaries introduced concepts
(i.e. DQI measure), recalled IR pillars (i.e. exhaustiveness
times specificity measure) and relatively recent theory such
as semi-subsumed events. Together, the relationships and
preliminaries form the theoretical ground of D2Q2.

Our starting point is ES(d, q) = P (q|d) · P (d|q), the
exhaustiveness-times-specificity measure commonly used
as the basis to justify retrieval models. By analogy, we



define D2Q2 as the product of D2 (Equation 8) and Q2
(Equation 20):

D2Q2 := D2 ·Q2 (36)

where D2 relates to D2Q (exhaustiveness) and Q2 relates
to Q2D (specificity). We also know that D2 (linear) corre-
sponds to LM and Q2 (extreme) corresponds to TF-IDF. In
other words, D2Q2 “joins” LM and TF-IDF.

We show now that D2Q2 corresponds to DQI2, where
one of the DQI relates to LM and the other relates to TF-
IDF. This is expressed as follows:

D2Q2 = DQI2

By inserting Equation 36 for D2Q2 and Equation 4 for
DQI, we obtain the decomposed form:

P (q|d)
P (q)

· P (d|q)
P (d)

=
P (d, q)

P (d) · P (q)
· P (d, q)
P (d) · P (q)

(37)

We continue now with the two forms of D2Q2, namely,
D2Q2extreme and D2Q2linear, which we further decompose:

D2Q2extreme = (38)∏
t∈d∩q

[(
P (t|d)
P (t|c)

)TF(t,q)

·
(

P (t|q)
P (t|c)

)TF(t,d)
]

D2Q2linear = (39)∏
t∈d∩q

(
(1−λd)+λd ·

P (t|d)
P (t|c)

)TF(t,q)

·

(
(1−λq)+λq ·

P (t|q)
P (t|c)

)TF(t,d)

Equations 38 and 39 contain the core contribution of this
paper: the seamless and symmetric composition of proba-
bilistic parameters into a score that embeds LM and TF-
IDF. The main properties of D2Q2 are:

1. A symmetric pattern of the two models’ components:
for LM these are P (t|d) and TF(t, q), and for TF-
IDF these are P (t|q) and TF(t, d); the collection-
wide term probability P (t|c) is common to both. The
term frequency TF(t, d) and TF(t, q) can be set as in
BM25: TFK(t, x) := tfx/(tfx + Kx), which corre-
sponds to assuming the occurrences of t to be semi-
subsumed; alternatively, if assuming independence,
then TF(t, x) := tfx, where tfx is the total term fre-
quency count.

2. Derivation and interpretation based on conditional
probabilities and document-query independence
(DQI): D2 = P (q|d)/P (q) = DQI relates to LM,
and Q2 = P (d|q)/P (d) = DQI relates to TF-IDF.
To decompose D2 and Q2, the “extreme” or the
“linear” mixture assumption is applied to both
P (t|d, c) and P (t|q, c), leading to P (t|d)/P (t|c) and
P (t|q)/P (t|c).

3. The two fractions P (t|d)/P (t|c) and P (t|q)/P (t|c)
measure “divergence”, i.e. they express that a term
with P (t|d) > P (t|c) and P (t|q) > P (t|c) is a good
term, where a term is good if its probability in d and q
is greater than in collection c. Conditional entropy and
Kullback-Leibler divergence incorporate such factors.

4. The “discriminativeness”, expressed by 1/P (t|c), oc-
curs twice, for the document side and for the query
side; this is similar to the vector-space model, where
the idf is in both the document and query vectors.

For each of D2 and Q2, there is the choice to apply either
a linear or the extreme mixture. Our experiments, described
next, focus on D2Q2-extreme, which does not involve any
mixture parameter, and D2Q2-linear, the model with two
mixture parameters (λd and λq). We define the D2Q2 re-
trieval status value using logs.

RSVD2Q2(d, q) := log D2Q2 (40)

The next equations show the decomposed, logarithmic
form of D2Q2extreme (Equation 38) and D2Q2linear (Equa-
tion 39):

RSVD2Q2-extreme(d, q, c) = (41)∑
t∈d∩q

[
TF(t, q)·log

P (t|d)
P (t|c)

+ TF(t, d)·log
P (t|q)
P (t|c)

]

RSVD2Q2-linear(d, q, c) = (42)∑
t∈d∩q

TF(t, q)·log
(

(1−λd)+λd ·
P (t|d)
P (t|c)

)
+

TF(t, d)·log
(

(1−λq)+λq ·
P (t|q)
P (t|c)

)
The above decomposed forms illustrates how D2Q2

joins the inner components of LM and TF-IDF, showing
that D2Q2 is hybrid, i.e. a model beyond combining scores.

7 Experiments
Although the main contribution of this paper was the rela-
tionship between LM and TF-IDF, it remains interesting to
investigate the experimental performance of D2Q2.

7.1 Set-up
We introduced two retrieval functions derived from D2Q2,
RSVD2Q2-extreme and RSVD2Q2-linear. We now investigate their
retrieval performance on a range of collections, outlined in
Table 1, of varying size and content.

Documents Topics Size
ND(c) NQ(c)

TREC-2 700,000+ 50 1.3 GB
TREC-3 700,000+ 50 1.3 GB
TREC-8 500,000+ 50 834 MB
WT2g 247,000+ 50 2 GB
Blogs06 3,200,000+ 50 88.8GB

Table 1: Collection Statistics

Following TREC settings [Ounis et al., 2006], for the
Blog06 collection, we index only the permalinks (the blog
posts and their associated comments). The Porter stem-
mer was used for stemming. No stopwords removal was
applied. We only used the title topic field. We measure
retrieval quality with Mean Average Precision (MAP) (top-
ical MAP on Blog06 [Ounis et al., 2006]) and P@10.

Model Equation
LMDirich Equation 2
TFK -IDF Equation 3
LM+TFK -IDF Combinations of retrieval scores
D2Q2extreme,TFK

Equation 41
D2Q2linear,TFK

Equation 42
Table 2: Retrieval Models.

Table 2 associates the retrieval models with their respec-
tive equations. The first two correspond to the LM and TF-
IDF models, the third to the combination of scores of LM



and TF-IDF, and the last two are the two models derived
from D2Q2. In TFK-IDF and in D2Q2, the TFK compo-
nent is the BM25-TF, i.e. TFK(t, d)= tfd/(tfd+Kd), where
the common setting is Kd = k1 · (b · dl/avgdl + (1 − b)).
We also set Kd = 1 to observe the effect of the BM25-TF
on performance.

We used TFK(b=0.25,k1=1.2) · IDF (which corresponds to
BM25 with no relevance information), LM with Dirichlet
smoothing and the combination LM+TFK-IDF as base-
lines. The parameters b, k1 and µD were set to 0.25, 1.2
and 2000, respectively, while µQ was set to the average
query length. The aforementioned settings were applied
across all of the collections, i.e. the retrieval models were
not tuned per collection.

For LM+TFK-IDF we used two methods to combine
LM and TFK-IDF inspired by [Larkey and Croft, 1996],
and for each method we use two normalisation scheme.
The first method is based on adding the normalised scores
of the documents retrieved by both LM and TFK-IDF. The
normalisation was done either by dividing each individual
score by the maximum score for each retrieval model or by
dividing by the sum of the scores for each model. The other
combination was performed by multiplying the normalised
scores which were retrieved by both retrieval models. The
normalisations were applied in a similar fashion as for the
first method.

7.2 Results and Analysis
Table 3 shows for selected models the MAP and P@10.
The performance of the TF-IDF with independence as-
sumption, where TF(t, d)= tfd, was omitted since too poor
to be considered as a baseline (MAP in average was one
third of the MAP achieved by TFK-IDF). Similar observa-
tions were made for D2Q2 with independence assumption,
and as such the corresponding results are omitted.2

The setting TFK := tf/(tf + K) was instrumental in
achieving competitive retrieval performance, and hence we
report only results for this setting. We discussed the notion
of “semi-subsumed” events which embeds the BM25-TF
into D2Q2. In D2, TFK(t, q) is applied whereas in Q2, it
is TFK(t, d). D2Q2-extreme has no mixture parameters,
whereas for D2Q2-linear, the parameter µD controls the
Dirichlet mixture parameter λd (and µQ controls λq). The
overall result is expressed by the relative distance between
models (last row of Table 3).

Overall, most candidates deliver about the same perfor-
mance, with marginal differences among the top candi-
dates. Only one score combination (multiplication of nor-
malised LM and TF-IDF scores) is a poor outlier. The
D2Q2 family of models has in half of the cases (5 of 10
benchmarks) the best performer. Some members of the
D2Q2 family performed better than others, where in ten-
dency, the linear mixtures are better than extreme mixtures.
This is as expected, since the extreme mixtures rely on as-
sumptions that neglect the Dirichlet mixture parameter.

We ran statistical significance tests based on Student’s
paired t-test with confidence levels α = 0.01 and α = 0.05.
In all cases, the results for the best D2Q2 model and the
best traditional model were not significantly different. On
one hand, this confirms the reasonable performance of the

2We could however notice that the independence assumption
was less detrimental for the D2 (LM) side than for the Q2 (TF-
IDF) side. This is because for D2, the assumption is for the query
(TF(t, q)), which usually contains only few multiple occurrences
of terms.

D2Q2 models. On the other hand, if we had expected an
improvement from devising a new model that consists of
the inner organs of LM and TF-IDF, then we are disap-
pointed, since the single models perform already relatively
well on their own.

Overall, the experimental results show that the hybrid
D2Q2 performs within the main-fold of the retrieval qual-
ity reported for the baselines. Regarding the comparison
of the score aggregation LM+TFK-IDF versus the hybrid
D2Q2, the score aggregation is outperformed by the hy-
brid (except for TREC-2 where the difference is marginal).
In the light of the aforementioned expectation that com-
bining two models delivers the averaged quality, the per-
formance of D2Q2 underlines the effect of hybridity. This
supports the conclusion that D2Q2 combines the LM and
TF-IDF features such that a micro combination of proba-
bilities performs better than a macro combination of scores
as expressed by LM+TFK-IDF.

D2Q2 shows a stable performance that is marginally bet-
ter than the baselines, but D2Q2 does not significantly out-
perform the baselines. The experiments confirm the ratio-
nale underlying D2Q2, a framework that encompasses LM
and TF-IDF, and their combinations. In particular, D2Q2
truly combines the LM and TF-IDF features into a theory
based on probabilities, exhaustiveness and specificity.

8 Conclusions
This research was motivated by investigating the relation-
ship between LM and TF-IDF to attempt to provide an-
swers to statements such as “we know why TF-IDF works,
and we know that LM works, but we do not know why LM
works”. By developing a side-by-side derivation of LM and
TF-IDF, a framework based on P (q|d) ·P (d|q) emerged,
which we named D2Q2. The main contribution of this pa-
per is the theory that underpins the probabilistic framework
D2Q2, where the D2 side is LM, and the Q2 side is TF-IDF.
This theory reveals the link between LM and TF-IDF, and
the D2Q2 framework shows how the features of both mod-
els can be combined in a theoretically sound manner. In
addition, D2Q2 shows comparable retrieval performance to
competitive baselines, making D2Q2 to be not just another
unifying framework but a retrieval model in its own right.

Our emphasis was on LM and TF-IDF. Future work will
elaborate on the relationship between BM25 and D2Q2.
D2Q2 establishes a balanced view on LM and TF-IDF, and
this can potentially lead to a consolidated anatomy of the
models, viewing LM and TF-IDF as the models for missing
relevance, and devising BM25-D2 (an LM-based BM25)
and BM25-Q2 (TF-IDF-BM25) as relevance models.
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