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Abstract

In many real world applications data is collected
in multi-dimensional spaces, with the knowledge
hidden in subspaces (i.e., subsets of the dimen-
sions). It is an open research issue to select
meaningful subspaces without any prior knowl-
edge about such hidden patterns. Standard ap-
proaches, such as pairwise correlation measures,
or statistical approaches based on entropy, do
not solve this problem; due to their restrictive
pairwise analysis and loss of information in dis-
cretization they are bound to miss subspaces with
potential clusters and outliers.
In this work1, we focus on finding subspaces with
strong mutual dependency in the selected dimen-
sion set. Chosen subspaces should provide a high
discrepancy between clusters and outliers and en-
hance detection of these patterns. To measure
this, we propose a novel contrast score that quan-
tifies mutual correlations in subspaces by con-
sidering their cumulative distributions—without
having to discretize the data. In our experiments,
we show that these high contrast subspaces pro-
vide enhanced quality in cluster and outlier de-
tection for both synthetic and real world data.

1 Introduction
Clustering and outlier detection are two key data mining
tasks. They are widely used, such as in bioinformatics, for
detecting functionally dependent genes, in marketing, for
customer segmentation, in health surveillance, for anomaly
detection, and so on. For these techniques to work well,
some kind of dependency between the objects in a given
data space is required, i.e., high similarity between clus-
tered objects and high deviation between outliers and the
residual data distribution.

Obviously, detecting clusters and outliers in uniformly
random distributed spaces, e.g., considering a data space
with independent dimensions, does not make sense at all.
With more and more dimensions such effects tend to hinder
data mining tasks, which is widely known as the “curse of
dimensionality” [Beyer et al., 1999]. Not just a fringe theo-
retical case, we observe this effect in practice, for example,
in gene expression analysis where each gene is described
with very many expression values under different medical

1This work has been published in Proc. SIAM International
Conference on Data Mining (SDM 2013) [Nguyen et al., 2013]

treatments. In general, we observe a loss of contrast be-
tween clusters and outliers in the full space (all given di-
mensions) of the data, while the meaningful knowledge is
hidden in subspaces (i.e., subsets of the dimensions) that
show a high dependency between the selected dimensions.

Recently, more attention has been placed on subspace
clustering [Agrawal et al., 1998; Aggarwal et al., 1999; Se-
queira and Zaki, 2004; Müller et al., 2009a] and subspace
outlier detection [Aggarwal and Yu, 2001; Kriegel et al.,
2009; Müller et al., 2011]. Both of these paradigms detect
a set of relevant dimensions for each individual cluster or
oultier. Hence, they are able to detect meaningful patterns
even if only few dimensions are relevant for the individual
pattern. However, they all face a common problem in the
selection of subspaces. Each of the techniques re-invents
a very specific subspace selection scheme according to the
underlying cluster or outlier model. Only few techniques
have focused on general solutions to the problem of sub-
space search designed for clustering [Cheng et al., 1999;
Baumgartner et al., 2004] or outlier mining [Ye et al., 2009;
Keller et al., 2012]. In this work, we follow this general
idea of subspace search. We aim at a further generalization
for the selection of relevant subspaces.

More specifically, we aim at selecting high contrast sub-
spaces that potentially provide high contrast between clus-
tered and outlying objects. Due to its generality this prob-
lem statement poses several open questions. First, it is un-
clear how to measure the contrast of a given set of dimen-
sions. Solutions based on correlation analysis and entropy
measures seem promising but show major drawbacks w.r.t.
pairwise analysis, discretization, and the empty space prob-
lem, as we will explain later. Second, one requires robust
statistics to capture the mutual dependence of dimensions.
Existing solutions performing a pairwise analysis miss im-
portant higher-order dependencies that can only be iden-
tified when multiple dimensions are considered together.
Finally, a subspace selection has to be performed in an ef-
ficient manner in order to scale with the increasing number
of dimensions, i.e., an exponential search space.

We tackle all three of these challenges by our contrast
measure. It is independent of any cluster or outlier model
and purely based on the statistical dependence of data ob-
served in a multi-dimensional subspace. Furthermore, it
is directly applicable to continuous data and does not fall
prey to the information loss by previous discretization tech-
niques. It is designed to capture mutual dependencies, and
thus, quantifies the subspace deviation from the condition
of uncorrelated and independent dimensions: “The larger
the deviation from the mutual independence assumption,
the higher the contrast of a subspace.” Hence, we instan-
tiate our measure based on the analysis of cumulative dis-



tributions in different subspaces. Cumulative distributions
have the advantage that they can be computed directly on
empirical data. Furthermore, we propose a scalable pro-
cessing scheme to select high contrast subspaces. Due to
the exponential search space we rely on an approximative
solution based on beam search.

Overall, our contributions are as follows: (a) a set of ab-
stract quality criteria for subspace search based on contrast
analysis, (b) our multi-variate contrast measure based on
cumulative distributions for continuous data, (c) a scalable
subspace search method applying our contrast measure for
subspace selection, and (d) quality enhancement for both
subspace clustering and subspace outlier mining as a result
of high contrast.

2 Related Work
Pairwise measures and space transformations. First,
we discuss approaches that assess dependencies between
dimensions. Spearman correlation and modern vari-
ants [Reshef et al., 2011] are aimed at pairwise correla-
tions. However, higher order interactions (i.e., mutual de-
pendence) among several dimensions can be missed. Simi-
larly, dimensionality reduction techniques [Lee and Verley-
sen, 2007], including PCA, are not aware of locally clus-
tered projections; they only measure the (non-)linear de-
pendence between dimensions, meaning that they consider
one (global) projection, and may hence miss interesting lo-
cal projections containing subspace clusters and outliers.
Our method, on the other hand, is not limited to a pairwise
assessment and provides multiple projections for clustering
and outlier mining. It can cope with mutual dependencies
in arbitrary subspace projections.
Feature selection. Next, we consider methods for unsuper-
vised feature selection. Recent methods [Dy and Brodley,
2004; Law et al., 2004] perform iteratively a partitioning
and feature selection. They first partition the data (e.g.,
by EM clustering), and then they evaluate feature subsets
based on the obtained clusters. Another approach [Roth
and Lange, 2003] aims at different feature subsets for dif-
ferent clusters. However, it focuses on disjoint clusters and
does neither allow overlapping clusters nor outliers. Our
method is more general and is aware of outliers and over-
lap of clusters. In general, feature selection differs from
our approach in major aspects. Current feature selection
methods are specifically bound to clustering. In contrast,
our method is more general and suitable for both cluster
and outlier mining in multiple subspaces. Most approaches
[Dy and Brodley, 2004; Law et al., 2004] select a single
projection of the data space, which uncovers some certain
cluster structure in the data. These methods are limited to
one subspace, while we mine multiple possibly overlapping
subspaces. Yet keeping only one subspace may miss local
projections containing different subspace clusters [Müller
et al., 2009b].
Subspace search. We now discuss methods for selecting
relevant subspaces. They avoid the limitations of the above
paradigms, and focus on multiple projections with arbitrary
dimensionality. Existing methods, however, rely on dis-
cretization of continuous dimensions [Cheng et al., 1999;
Ye et al., 2009] or only work with binary data [Zhang et al.,
2008] and/or discrete data [Chanda et al., 2010].

ENCLUS [Cheng et al., 1999] and PODM [Ye et al.,
2009] detect subspaces with low entropy and high interest,
discretizing continuous dimensions into equi-width bins in
order to compute the entropy measure. By requiring dis-

cretization, these methods have unintuitive parameters, and
are hence inherently susceptible to knowledge loss and to
the curse of dimensionality. To some extent, these limi-
tations have been tackled by HiCS [Keller et al., 2012],
which works directly on continuous data. It quantifies the
differences between the marginal and conditional distribu-
tion in a random dimension of the considered subspace; by
its random nature it may hence miss relevant subspaces.
Further, it is exposed to the curse of dimensionality w.r.t.
conditional distributions in high dimensional spaces.

Our method, on the other hand, can reliably score con-
trast, regardless of subspace dimensionality. Furthermore,
for each subspace we aim to find that permutation of di-
mensions that yields optimal contrast.
Cluster and outlier detection in subspaces. Specific
methods for clustering and outlier detection have been pro-
posed. However, they do not provide a general notion of
subspace selection. They select subspaces very specifically
to the underlying cluster [Agrawal et al., 1998; Aggarwal
et al., 1999; Sequeira and Zaki, 2004; Müller et al., 2009a]
or outlier [Aggarwal and Yu, 2001; Kriegel et al., 2009;
Müller et al., 2011] definitions. In contrast to all these solu-
tions, our goal is to design a contrast measure that is appli-
cable to subspace selection for different mining paradigms.
We show its instantiations to clustering and outlier detec-
tion and evaluate its quality.

3 Basic Notions for Contrast Assessment
Given a database DB of size N and dimensionality D, we
want to measure the contrast of any lower dimensional sub-
space S with dimensionality 1 ≤ d ≤ D. Our assess-
ment is based on the full space of all dimensions given
by F = {X1, . . . , XD}. Each dimension i is associated
with a random variable Xi that has a continuous value do-
main dom(Xi) = R. We use the notion of density dis-
tribution pXi

(xi) for the projected database on dimension
i. We write pXi

(xi) as p(xi) when the context is clear.
Any non-empty subset S ∈ P(F ) is called a subspace
of DB. The dimensionality of S is denoted as dim(S).
W.l.o.g., {X1, . . . , Xd} is used as representative for any d-
dimensional subspace S in our analysis.

3.1 Contrast Assessment.
As our general notion of a contrast measure we have the
following formalization:

Definition 1 Contrast Measure of Subspaces:

C : P(F ) \ {∅} → R

In general, the contrast score C(S) quantifies the differ-
ence of S w.r.t. the baseline of d independent and randomly
distributed dimensions. In the following we provide differ-
ent instantiation of this contrast measure and discuss formal
properties of the instantiations. Let us first formalize the in-
dependence baseline. For d random variables X1, . . . , Xd,
there are two types of independence we are interested in.

Definition 2 Mutual Independence:
X1, . . . , Xd are mutually independent iff

p(x1, . . . , xd) = p(x1) · · · p(xd)

Definition 3 m-wise Independence:
X1, . . . , Xd are m-wise independent with m ≤ d iff any
subset {Xi1 , . . . , Xim} ⊆ {X1, . . . , Xd} is mutually inde-
pendent.



Please note that pairwise independence is modeled as a
special case of m-wise independence when m = 2. How-
ever, pairwise analysis misses important higher-order de-
pendencies that can only be identified when multiple di-
mensions are considered altogether. Therefore, we focus
on higher-order dependencies and their contrast assess-
ment. A subspace is referred to as uncorrelated if its di-
mensions are mutually independent. Our goal is to design
a contrast measure C that quantifies as closely as possi-
ble the deviation of subspaces from uncorrelated ones. In
other words, for a d-dimensional subspace S with dimen-
sions {X1, . . . , Xd}, its contrast depends on the difference
between two functions: p(x1, . . . , xd) and p(x1) · · · p(xd).

C (S ) ∼ diff (p(x1 , . . . , xd), p(x1 ) · · · p(xd))

Contrast of one-dimensional subspaces is undefined. Thus,
we restrict the contrast measure C to two- or higher-
dimensional subspaces. In the following, we propose three
properties for a meaningful contrast assessment based on
the idea “deviating from uncorrelated subspaces”:
Property 1 (Discriminative contrast scores): For subspaces
S1 and S2 such that dim(S1) = dim(S2), if S1 is more
correlated than S2 then C(S1) > C(S2).
Property 2 (Zero contrast score): C(S) = 0 if and only if
the dimensions of S are mutually independent.
Property 3 (Awareness of m-wise independence): If the
dimensions of S are m-wise independent but not mutually
independent then C(S) is small but not zero. This is be-
cause m-wise independence does not guarantee mutual in-
dependence.

Furthermore, C should be directly applicable to contin-
uous data, i.e., we do not require discretization to obtain
the probability mass functions. Since discretization causes
knowledge loss, this property is mandatory.

3.2 Discussion of Properties.
Looking at existing techniques, ENCLUS [Cheng et al.,
1999] instantiates the diff function by the well-known
total correlation

∑d
i=1H(Xi) − H(X1, . . . , Xd) where

X1, . . . , Xd are discretized versions of the original di-
mensions. PODM [Ye et al., 2009] also discretizes data
and instantiates the diff function as

∑
1

p(x1,...,xd)
where

p(x1, . . . , xd) 6= 0. The instantiation of HiCS [Keller et
al., 2012] is done by averaging over multiple random runs
of the form diff (p(xi), p(xi |{x1 , . . . , xd} \ {xi})) where
Xi is picked randomly.

None of these techniques fulfills all properties men-
tioned. Considering Property 1, the measure of ENCLUS
is unreliable because of the knowledge loss caused by data
discretization. Further, the use of the joint probability mass
function p(x1, · · · , xd) also is problematic. In particular,
H(X1, . . . , Xd) = −

∑
p(x1, . . . , xd) log p(x1, . . . , xd)

with p(x1, . . . , xd) measured by the relative number of
points in the respective hypercube. For increasing d,
most hypercubes are empty and the non-empty ones most
likely contain only one data point each [Aggarwal and
Yu, 2001; Lee and Verleysen, 2007]. Taking into account
that limx→0 x log x = 0, H(X1, . . . , Xd) approaches
−
∑N

i=1
1
N log 1

N = logN . Hence, when d is large enough
and all Xi have a similar distribution (e.g., uniformly
dense), any d-dimensional subspaces S1 and S2 have very
similar contrast: C(S1) ≈ C(S2). In other words, the mea-
sure of ENCLUS produces indifferent contrasts for high
dimensional subspaces. Thus, it fails to satisfy Property 1,

i.e., the most basic property. PODM relying on data dis-
cretization and the joint probability p(x1, . . . , xd) suffers
the same issue. As for HiCS, the random choice of Xi

causes potential loss of contrast as some attribute may not
be tested against the remaining ones. In addition, HiCS
uses conditional probability distributions with (d− 1) con-
ditions and exposes itself to the same problem of empty
space.

Considering Properties 2 and 3, since ENCLUS works
with discretized data that causes loss of knowledge, it
only satisfies these properties with a proper grid resolu-
tion. Such a resolution is data-dependent. PODM misses
both Properties 2 and 3 since its measure just relies on the
joint probability, i.e., it does not measure dependency. A
zero contrast assigned by HiCS does not imply uncorre-
lated spaces since there is no guarantee that all dimensions
are assessed against the others at least once. Thus, HiCS
does not meet Property 2. Furthermore, HiCS does not aim
at m-wise independence and thus does not address Prop-
erty 3.

4 Methodology
In order to address all three properties, we first introduce
a novel notion of mutual information, called Cumulative
Mutual Information (CMI ), which is instantiated based on
a new notion of entropy, called Cumulative Entropy (CE ).
We then verify that CMI addresses Properties 1 to 3. Since
CMI is dependent on the order of subspace dimensions, we
then devise an approach to select a dimension permutation
that approximates the optimal CMI value for a given sub-
space. Due to space limitation, all proofs for the following
theorems will be provided as an extended version of this
paper.

4.1 Cumulative mutual information.
Given continuous random variables X1, . . . , Xd, their cu-
mulative mutual information CMI (X1, . . . , Xd) is defined
as:

d∑
i=2

diff (p(xi), p(xi|x1, . . . , xi−1))

Intuitively, CMI (X1, . . . , Xd) measures the mutual infor-
mation of X1, . . . , Xd by aggregating the difference be-
tween p(xi) and p(xi|x1, . . . , xi−1) for 2 ≤ i ≤ d.
Loosely speaking, it is the sum of the contrasts of sub-
spaces (X1, X2), . . . , (X1, . . . , Xi), . . . , (X1, . . . , Xd) if
we consider diff (p(xi), p(xi|x1, . . . , xi−1)) to be the con-
trast of the subspace (X1, . . . , Xi). The reason for us-
ing lower-dimensional subspace projections is to avoid the
empty space phenomenon. Since probability functions are
not available at hand and can only be roughly estimated,
e.g. by discretization, we aim at a direct solution us-
ing cumulative distributions as difference of two functions
diff (p(xi), p(xi|x1, . . . , xi−1)). We instantiate CMI by
means of CE and conditional CE that are based on cu-
mulative distributions. We demonstrate in Section 5 how
these allow efficient contrast calculation without discretiz-
ing data. Their definitions are given below:

Definition 4 The cumulative entropy for a continuous
random variable X , denoted hCE (X), is defined as:

hCE (X) = −
∫
dom(X)

P (X ≤ x) logP (X ≤ x)dx

Our notion of cumulative entropy is based on [Crescenzo
and Longobardi, 2009]. However, it is more general since
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Figure 1: Example of low and high contrast subspaces with different CMI s

it is not restricted to non-negative random variables. Fur-
thermore, we extend the notion of CE to conditional cumu-
lative entropy and prove that it maintains some important
properties of traditional conditional entropy as follows:

Definition 5 The conditional CE of any continuous
random variable X knowing that some random vector
V ∈ RB (with B being a positive integer) takes the value
v is defined as:

hCE (X|v) = −
∫
dom(X)

P (X ≤ x|v) logP (X ≤ x|v)dx

The CE of X conditioned by V is:

EV [hCE (X|V )] =

∫
dom(V )

hCE (X|v)p(v)dv

Just like the usual conditional entropy, we denote
EV [hCE (X|V )] as hCE (X|V ) for notational convenience.
The conditional CE has two important properties given by
the following theorems:

Theorem 1 EV [hCE (X|V )] ≥ 0 with equality iff there
exists a function f : dom(V ) → dom(X) such that X =
f(V ).

Theorem 2 EV [hCE (X|V )] ≤ hCE (X) with equality iff
X is independent of V .

Under CE , diff (p(x), p(x| . . .)) is set to hCE (X) −
hCE (X| . . .). Therefore, CMI (X1, . . . , Xd) becomes:

d∑
i=2

hCE (Xi)−
d∑

i=2

hCE (Xi|X1, . . . , Xi−1)

where hCE (Xi|X1, . . . , Xi−1) is hCE (Xi|V ) with V =
(X1, . . . , Xi−1) being a random vector in dom(X1)×· · ·×
dom(Xi−1).

Regarding the three properties, similar to traditional mu-
tual information, the more correlated X1, . . . , Xd are, the
smaller the conditional CE s are, i.e., the larger is CMI .

Thus CMI is able to capture subspace correlation (Prop-
erty 1). To illustrate this property, we use the toy exam-
ple in Figure 1. It depicts the scatter plots, CDF plots,
and plots of the function −P (X ≤ x) logP (X ≤ x),
namely −CDF logCDF , of two subspaces S1 and S2

(CCDF means conditional CDF). The blue lines stand for
the marginal distribution of the corresponding dimension.
The red lines feature the conditional distribution of one di-
mension obtained by selecting a range of the remaining
dimension (gray strips). One can see that S2 has higher
contrast than S1 and hence, CMI (X3, X4)selected range =
4.344 > CMI (X1, X2)selected range = 0.113. Further,
even when high-order conditional CE s may be impacted
by the curse of dimensionality, CMI still yields distin-
guishable contrast for high dimensional subspaces due to
its member low-order conditional CE s. If X1, . . . , Xd

are m-wise independent, then CMI (X1, . . . , Xd) is low as
hCE (Xi)−hCE (Xi| . . .) vanishes for i ≤ m (Property 3).
However, we have proved that CMI = 0 iff X1, . . . , Xd

are mutually independent (Property 2).

Theorem 3 CMI (X1, . . . , Xd) ≥ 0 with equality iff
X1, . . . , Xd are mutually independent.

4.2 Choice of permutation.
CMI can be used as our contrast measure. However, CMI
changes with dimension permutations. In order to make our
contrast measure permutation-independent we investigate a
heuristic search of the maximal contrast.

Our goal is to find a permutation that maximizes the
contrast of a given subspace S = {X1, . . . , Xd}. Since
CMI is permutation variant, there are d! possible cases
in total. Together with the exponential number of sub-
spaces, a brute-force approach is impractical. We there-
fore apply a heuristic to obtain a permutation that approx-
imates the optimal one. In particular, we first pick a pair
of dimensions Xa and Xb (1 ≤ a 6= b ≤ d) such that
hCE (Xb) − hCE (Xb|Xa) is maximal among the possible
pairs. We then continue selecting the next dimension Xc



(c 6= a and c 6= b) such that hCE (Xc)− hCE (Xc|Xa, Xb)
is maximal among the remaining dimensions. Likewise,
at each step, assuming I = {Xp1 , . . . , Xpk

} is the set of
dimensions already picked and R = {Xr1 , . . . , Xrd−k

} is
the set of remaining ones, we select the dimensionXri ∈ R
such that hCE (Xri) − hCE (Xri |I) is maximal. The pro-
cess goes on until no dimension is left. Denoting the per-
mutation obtained by our strategy as πopt, the contrast of S
is defined as CMI (πopt(X1, . . . , Xd)).

5 Algorithmic Approach
For a D-dimensional data set, there are 2D − 1 candidate
subspaces to examine. The exponential number of sub-
spaces makes a brute-force search impractical. A scalable
subspace exploration framework is required. Moreover, the
contrast measure must also permit efficient computation. In
this section, we first introduce an approximate yet scalable
levelwise subspace search framework. We then proceed to
discuss how to compute our measure efficiently.

5.1 Scalable subspace exploration.
Our aim is to mine high contrast subspaces upon which
subspace clustering and outlier detection techniques are ap-
plied. To tackle the exponential search space, we target at
a processing scheme that trades off accuracy for efficiency.
More specifically, we rely on the intuition that a high con-
trast high dimensional subspace likely has its high contrast
reflected in its lower-dimensional projections. In the field
of subspace clustering, there is an analogous observation:
Subspace clusters tend to have their data points clustered
in all of their lower-dimensional projections [Agrawal et
al., 1998; Müller et al., 2009b]. One can then apply a lev-
elwise scheme to mine subspaces of contrast larger than
a pre-specified value. However, to facilitate parameteriza-
tion of our method, we avoid imposing direct thresholds on
contrast scores produced by CMI .

Instead, we design a beam search strategy to obtain ef-
ficiency. Starting with two-dimensional subspaces, in each
step we use top M subspaces of high contrast to generate
new candidates in a levelwise manner. A newly generated
candidate is only considered if all of its child subspaces
have high contrast. First, this permits tractable time com-
plexity. Second, interaction among different subspace di-
mensionality is taken into account and selected subspaces
are ensured to have high contrast. Third, we avoid redun-
dancy, if T ⊆ S and S has higher contrast than T . In this
case, T is excluded from the final result.

5.2 Efficient contrast computation.
To compute CMI , we need to compute CE and conditional
CE .

Let X1 ≤ . . . ≤ Xn be i.i.d. random samples of the
continuous random variable X . Then hCE(X) can be cal-
culated as follows:

hCE(X) = −
n−1∑
i=1

(Xi+1 −Xi)
i

n
log

i

n

In contrast to this straightforward computation, it is not as
simple to calculate the conditional CE in an accurate and
efficient way. In the following, we first point out that due
to limited data, sticking to the exact formula of conditional
CE may lead to inaccurate results. We then propose a strat-
egy to resolve this while ensuring that data discretization is
not required.

First, w.l.o.g., consider the space [−1/2, 1/2]d
containing N limited data points. The d di-
mensions are X1, . . . , Xd. Our goal is to com-
pute hCE(X1|X2, . . . , Xd) using limited available
data. From Definition 5: hCE(X1|X2, . . . , Xd) =∫ 1/2

−1/2 · · ·
∫ 1/2

−1/2 h(X1|x2, . . . , xd)p(x2, . . . , xd)dx2 · · · dxd.
Further:

hCE(X1|x2, . . . , xd) = limε→0+ hCE(X1|x2 − ε ≤
X2 ≤ x2 + ε, . . . , xd − ε ≤ Xd ≤ xd + ε)

Taking into account that the total number of data points
N is limited, the expected number of points contained in
the hypercube [x2 − ε, x2 + ε] × · · · × [xd − ε, xd + ε],
which is N(2ε)d−1, approaches 0 as ε→ 0+. For high di-
mensional spaces, the problem is exacerbated as one faces
the empty space phenomenon. With empty hypercubes (or
even hypercubes of one data point), hCE(X1|x2, . . . , xd)
vanishes. Hence, hCE(X1|X2, . . . , Xd) becomes 0. We
thus encounter a paradox: For commonly used density esti-
mation, e.g. by hypercubes [Cheng et al., 1999], one might
end up with an inaccurate result with the exact formula of
conditional CE. To alleviate this problem, we must ensure
to have enough points for meaningful calculation. There-
fore, we propose data summarization by clustering.

Clustering summarizes the data by means of clusters.
Since the number of clusters is generally much less than
the original data size, we may have more data points in
each cluster. Hence, the issue of limited data is miti-
gated. Assuming that a clustering algorithm is used on
DB projected to {X2, . . . , Xd} resulting in k clusters
{C1, . . . , Ck} (the support of Ci is |Ci|), we propose to
estimate hCE(X1|X2, . . . , Xd) by:

k∑
i=1

|Ci|
N

hCE(X1|Ci)

If k is kept small enough, we will have enough points for a
meaningful computation of hCE(X1|Ci) regardless of the
dimensionality d. As our cluster-based approach does not
rely on any specific cluster notion, it can be instantiated by
any method. To ensure efficient computation of the contrast
measure, we use the one-pass k-means clustering strategy
introduced in [Ordonez and Omiecinski, 2004]. We obtain
k clusters summarizing the data. For the parameter k, if
it is set too high, we may end up with high runtime and
not enough data in each cluster for a reliable estimation of
conditional CE . If it is instead set to 1, i.e., no clustering
at all, hCE(X1| · · · ) becomes hCE(X1), i.e., there is a loss
of information. In all of our experiments, we set k = 10.
Using clustering, one can verify that the conditional CE is
less than or equal to its respective unconditional one.

6 Experiments
We compare CMI , to three subspace search methods: EN-
CLUS [Cheng et al., 1999], HiCS [Keller et al., 2012], and
PODM [Ye et al., 2009]. As further baselines we include
random selection (FB) [Lazarevic and Kumar, 2005], PCA
[Lee and Verleysen, 2007], and pairwise correlation (PW)
[Reshef et al., 2011]. For CMI we use M = 400 and
k = 10, unless stated otherwise. In order to assist com-
parability and future research in this area, we provide our
algorithm, all datasets, parameters and further material on
our website.2

2http://www.ipd.kit.edu/˜muellere/CMI/
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Figure 2: Subspace quality w.r.t. dimensionality

We evaluate how mining of high contrast subspaces im-
proves the result quality of outlier detection and clustering
techniques. Therefore, LOF [Breunig et al., 2000] and DB-
SCAN [Ester et al., 1996], two well-established methods,
are used on top of the tested approaches. For fair compari-
son, we use the same parameter settings for both LOF and
DBSCAN.

To ensure succinct sets of subspaces that allow for post-
analysis, only the best 100 subspaces of each technique
are utilized for clustering and outlier detection. Out-
lier detection results are assessed by the Area Under the
ROC Curve (AUC) as in [Lazarevic and Kumar, 2005;
Keller et al., 2012; Müller et al., 2011]. Clustering results
are evaluated by means of F1, Accuracy, and E4SC as in
[Müller et al., 2009b; Günnemann et al., 2011].

6.1 Impact of dimensionality.
To illustrate that CMI is robust w.r.t. increasing dimen-
sionality of subspaces, we evaluate it on a synthetic data
set of 20 dimensions and 5120 data points, generated ac-
cording to [Müller et al., 2011]. Please note that in this
experiment, we perform an exhaustive search without any
pruning. Because of the large total number of subspaces
(220 − 1), we only experiment up to d = 10 to avoid ex-
cessive runtime. We record maxAd−minAd

maxAd
where Ad is

the set of contrast scores of all d-dimensional subspaces.
For 2 ≤ d ≤ 10, minAd ≈ 0 (as there are uncorrelated
d-dimensional subspaces) and maxAd 6= 0 (as there are

CMI HiCS Enclus Podm DBScan FB

20 dimensions
F1 0.96 0.96 0.72 0.75 0.65 0.67
Acc. 0.98 0.96 0.75 0.82 0.67 0.68
E4SC 0.92 0.75 0.42 0.36 0.19 0.27

40 dimensions
F1 0.93 0.88 0.65 0.72 0.54 0.61
Acc. 0.93 0.74 0.68 0.76 0.61 0.66
E4SC 0.89 0.73 0.27 0.34 0.21 0.23

80 dimensions
F1 0.94 0.83 0.62 0.68 0.57 0.61
Acc. 0.95 0.74 0.66 0.81 0.62 0.69
E4SC 0.86 0.57 0.22 0.34 0.24 0.25

120 dimensions
F1 0.94 0.86 0.52 0.61 0.55 0.63
Acc. 0.94 0.72 0.68 0.71 0.58 0.62
E4SC 0.87 0.64 0.18 0.23 0.21 0.19

Table 1: Clustering results on synthetic data sets

correlated d-dimensional subspaces with clusters and out-
liers). Hence, ideally maxAd−minAd

maxAd
= 1 for 2 ≤ d ≤ 10.

The results, plotted in Figure 2(a), show that HiCS, EN-
CLUS, and PODM do not scale well with higher dimen-
sionality. In contrast, CMI is more robust to dimensional-
ity and yields discriminative contrast scores even for high
dimensional subspaces.

6.2 Synthetic data: cluster and outlier mining.
Based on the method described in [Müller et al., 2011],
we generate synthetic data sets with 5120 data points and
20, 40, 80, and 120 dimensions. Each data set contains
subspace clusters embedded in randomly chosen 2-6 di-
mensional subspaces and 120 outliers deviating from these
clusters.
Quality for outlier mining. The quality of subspaces is
evaluated by inspecting how the selected subspaces en-
hance outlier detection compared to LOF in the full space.
The results are shown as Figure 2(b). Overall, CMI outper-
forms the competing techniques and is stable with increas-
ing dimensionality. The performance of LOF degrades with
increasing dimensionality of data. Similarly, FB [Lazarevic
and Kumar, 2005] is affected by random choice of low con-
trast projections. The pairwise method PW [Reshef et al.,
2011] and PCA show worst performance, due to their in-
ability to measure contrast in multi-dimensional subspaces.
As subsequent evaluation confirmed this trend, we exclude
PW and PCA in the experiments below.
Quality for clustering. Here, subspace quality is assessed
by clustering results. DBSCAN is used as the baseline
method. Furthermore, for all methods tested, we reduced
redundancy in clustering output [Assent et al., 2007]. The
results in Table 1 show that CMI achieves best quality and
best scalability for increasing dimensionality. High E4SC
values of CMI indicate that it performs well in selecting
subspaces containing clusters and outliers.
Runtime vs. Dimensionality. Besides accuracy, we are
also interested in scalability w.r.t. runtime. In this exper-
iment, previous synthetic data sets are reused. Since the
tendency of all methods is similar in both outlier detection
and clustering, we only present the runtime for outlier de-
tection. We display in Figure 3(a) the total time for com-
pleting the task, i.e., time for mining subspaces (cf., Figure
3(b)) and time for outliers mining. We can see that CMI



scales better than our competitors.
Although FB does not spend much time for mining high

contrast subspaces, it clearly suffers from high overall run-
times. This is due to high dimensional subspaces that have
low contrast, and hence, induce the costly detection of
many false alarms. ENCLUS and PODM also scale badly
as their contrast measures are inefficient in terms of time
complexity. Since CMI prunes low contrast subspaces bet-
ter than HiCS, it can avoid exploring many high dimen-
sional subspaces. In conclusion, CMI is faster than all
tested approaches and yields higher accuracy.
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Figure 3: Runtime w.r.t. dimensionality

6.3 Evaluation on real world data.
All real world databases used in our experiments are from
the UCI Machine Learning Repository [Frank and Asun-
cion, 2010] and have been used as benchmarks in recent
publications [Lazarevic and Kumar, 2005; Müller et al.,
2009a; Müller et al., 2009b; Keller et al., 2012].
Quality for outlier mining. We evaluate the performance
of all subspace search methods with outlier detection on
real world data. We perform experiments on 9 benchmark
datasets, using the minority class as ground truth for the
outlier evaluation. In some of these data sets (e.g., Pendig-
its) all classes have identical support and we down-sample
one class to 10% of its original size, which is a commonly
used procedure in outlier evaluation [Lazarevic and Kumar,
2005; Keller et al., 2012; Müller et al., 2011]. The results

Dataset CMI HiCS Enclus Podm LOF FB

Thyroid 0.96 0.95 0.94 0.91 0.86 0.93
WBCD 0.95 0.94 0.94 0.87 0.87 0.87
Diabetes 0.73 0.72 0.71 0.69 0.71 0.72
Glass 0.82 0.80 0.80 0.78 0.77 0.78
Ion 0.83 0.82 0.82 0.78 0.78 0.79
Pendigits 0.98 0.95 0.94 0.86 0.94 0.93
Segment 0.94 0.84 0.88 0.89 0.76 0.86
Lympho 0.95 0.86 0.67 0.67 0.95 0.95
Madelon 0.60 0.59 0.51 0.56 0.59 0.59

Table 2: Outlier mining: AUC on real world data

in Table 2 show that CMI achieves the best AUC in all data
sets. In addition, we show the runtimes in Table 3. Over-
all, our method provides the best quality enhancement for
LOF.

Dataset CMI HiCS Enclus Podm FB

Thyroid 17.33 27.54 49.32 48.11 53.60
WBCD 16.42 17.11 33.63 34.55 24.49
Diabetes 1.74 1.80 4.74 4.63 5.56
Glass 0.24 0.24 0.27 0.26 0.27
Ion 6.01 6.19 7.31 7.19 8.07
Pendigits 1368.23 1616.96 2153.09 2094.36 1854.56
Segment 101.23 107.99 225.46 218.34 150.80
Lympho 4.10 6.08 6.37 5.79 5.31
Madelon 23.45 25.82 315.22 304.57 232.48

Table 3: Runtime (in seconds) for outlier detection

Quality for clustering. As we show in Table 4, CMI pro-
vides also the best quality improvement w.r.t. clustering. It
outperforms traditional full space DBSCAN and existing
subspace search methods that fail to identify clusters due
to scattered subspace projections. In contrast to the com-
peting approaches, we achieve a clear quality enhancement
for both subspace clustering and subspace outlier detection.

CMI HiCS Enclus Podm DBScan FB

Wisconsin Breast Cancer
F1 0.79 0.75 0.44 0.40 0.73 0.60
Acc. 0.77 0.72 0.69 0.67 0.71 0.69
E4SC 0.76 0.70 0.53 0.49 0.67 0.59

Shape
F1 0.82 0.77 0.76 0.74 0.55 0.76
Acc. 0.84 0.78 0.66 0.69 0.34 0.41
E4SC 0.71 0.64 0.58 0.63 0.38 0.44

Pendigits
F1 0.73 0.55 0.50 0.51 0.52 0.63
Acc. 0.81 0.75 0.66 0.64 0.68 0.77
E4SC 0.68 0.54 0.56 0.55 0.52 0.53

Diabetes
F1 0.71 0.53 0.25 0.15 0.52 0.58
Acc. 0.76 0.66 0.67 0.63 0.68 0.70
E4SC 0.65 0.34 0.11 0.07 0.52 0.52

Glass
F1 0.59 0.37 0.26 0.29 0.32 0.42
Acc. 0.68 0.54 0.52 0.55 0.32 0.44
E4SC 0.52 0.40 0.35 0.38 0.24 0.28

Table 4: Clustering: Quality on real world data



7 Conclusions
We proposed CMI , a new contrast measure for multi-
dimensional data. It is based on cumulative entropy of sub-
spaces and does not require data discretization. Further-
more, it is not restricted to pairwise analysis, captures mu-
tual dependency among dimensions, and scales well with
increasing subspace dimensionality. Overall, it is more ac-
curate and more efficient than previous subspace search
methods. Experiments on various real world databases
show that CMI provides improvement for both cluster and
outlier detection.
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