Three Handwriting Adaptation Approaches for Digit Recognition

Dieter Lutz and Martin Toepfer and Frank Puppe
Department of Computer Science VI, University of Wiirzburg
Am Hubland, Wiirzburg, Germany
dieter.lutz@ googlemail.com, {toepfer, puppe } @informatik.uni-wuerzburg.de

Abstract

Handwritten digit recognition in applications like
automatic exam grading is challenging because
handwritings inherently differ between develop-
ment data sets and real application scenarios. To
overcome this issue, we propose three handwrit-
ing adaptation methods and compare them on a
data set of 2860 samples of 26 different users.
We explain preprocessing and feature extrac-
tion steps, and suggest different adaptation ap-
proaches: two methods are similar to bootstrap-
ping, and one method uses dimensionality reduc-
tion. Experimentally, we show that adaptive ap-
proaches yield significantly better results than the
standard classifier. Adaptation improved the pre-
cision of an already good baseline by about one
to four percent depending on the size of the train-
ing set.

1 Introduction

High accuracy handwritten digit recognition systems typ-
ically build upon thousands to tens of thousands of an-
notated training images [DeCoste and Schélkopf, 2002].
However, even then classifiers appear to be brittle when
applied on slightly different data [Seewald, 2012]. One of
the reasons for this is that the same digit can look differ-
ently when it was written by different persons as depicted
in Figure 1. The samples on each side were written by
one student respectively, and we can see clearly that each
handwriting has distinct characteristics. As a result, sam-
ples of one class are consistent for a certain student, but
there may be inconsistencies summing over samples of dif-
ferent handwritings. Therefore, it is difficult to categorize
a sample without annotated samples from the same person
for a normal classifier. The proposed adaptation methods
deal with this problem by classifying a whole set of sam-
ples from one user at once instead of one by one. By this
means, they can utilize the similarities of these samples to
adapt the recognition process to new handwriting styles.
The evaluation of the techniques shows that this adaptation
of a classifier on the handwriting of one user is possible and
can improve the precision of the classifier.

The foundation of the customization approaches in this
paper is a Support Vector Machine classifier [Cortes and
Vapnik, 1995] which is also used as a baseline in the eval-
uation. However the introduced techniques are not re-
strained to this type of classifier, but they can also be used
with every other classifier which is able to specify the like-
lihood of its classification for every class. A possible use

case of the proposed methods is automatic exam grading,
like in [Mandel et al., 2011]. Hence the considered classes
are digits (0-9) as well as commas. On the exam sheets,
every digit and symbol is written into a separate box. The
exams get scanned and the boxes are cut apart. The result-
ing gray-scale images are grouped for every exam because
they originate from the same user. These sets of images are
the input for the classifier.

Our paper has the following structure. Firstly, we dis-
cuss related work and give an introduction to preprocess-
ing and feature extraction of the images. In Section 5, we
describe three different types of handwriting customization
techniques. In the evaluation section, the used data set is
described, and the results are presented and discussed. Fi-
nally, we suggest topics for future work and give a sum-

mary of our findings.
Z ;

Figure 1: Two samples of digit “2”, written by 2 students
with distinct handwritings.

] d"i

2 Related Work

Handwritten digit recognition is a well examined field with
many different approaches. One of the most successful
classifiers in this domain are Support Vector Machines
(SVM) [Cortes and Vapnik, 1995]. This is confirmed
in [DeCoste and Schélkopf, 2002] where a Support Vector
Machine approach with the lowest reported test error on the
MNIST digit recognition task at that time was proposed.
Processing human and computer generated data has led
researchers to adaptation techniques in different domains
of artificial intelligence. For instance, context consisten-
cies arise in text processing or speech recognition. Kliigl et
al. [2012], for example, collectively segment references of
scientific papers using statistical graphical models. They
exploit the homogeneity of formatting inside of sections
originating from style guide usage. Intelligent speech
recognition systems must also learn to map signals with
speaker specific characteristics to general symbols. For in-
stance, Leggetter and Woodland [1995] showed that lin-
ear transformations can be used to maximize the likelihood
of the new data and thereby associate patterns across in-

dividual speakers. To adapt online' handwritten charac-
ter recognition, Szummer and Bishop [2006] proposed to
use a mixture of experts. They assume a supervised setting
where some labeled examples of the new handwriting are
always available. Classifiers are trained on clusters of sim-
ilar handwriting styles, and combined to produce an adap-
tive model weighted by each classifiers’ posterior probabil-
ity on the labeled samples of a new handwriting. In this pa-
per, however, we propose approaches for adaptation when
no labeled data is present.

The subspace embedding technique in this paper is sus-
tained by the assumption that identical digits are close to
each other in a common subspace. This hypothesis is sup-
ported by [Chapelle er al., 2002] where clustering of unla-
beled instances in subspaces was utilized for kernel adap-
tation in Support Vector Machines, which improved their
error rate.

Adaptation of digit recognition models to user character-
istics is strongly related to semi-supervision. A very pop-
ular technique in this domain is bootstrapping [Yarowsky,
1995] which successively populates the training set with
the most confident predictions on the unlabeled data. Two
of the methods (Best-First-One/Two) that we propose in
Section 5 can be regarded as bootstrapping methods. Best-
First-One directly populates the training set with certain
unlabeled instances, whereas Best-First-Two creates a new
classifier with them and balances this classifier against the
initial one.

3 Preprocessing

The first stage of the classification process aims to reduce
the impact of different scales, positions and intensities of
the symbols. Furthermore it tries to remove noise from the
images. In the following, we illustrate all preprocessing
steps for the example shown in Figure 2.

Horizontal Cropping As the first step the digit is
cropped horizontal. This is done to remove potential ver-
tical lines originating from the frame of the boxes. The
detection and removal of lines at the borders is achieved by
calculating the average gray-scale value of the two most left
and right pixel columns. If the average value for the first
column is below 230 the column is removed and the second
column is taken into consideration in the same way. Oth-
erwise the image is not modified. Additionally a variance-
based heuristic is applied to try and crop the digit horizon-
tally in order to get rid of lines in the interior.

Binarization The next preprocessing step is the previ-
ously mentioned binarization. The main goal is to make
the input invariant to different intensities of the handwrit-
ten symbol. To put this into effect Otsu’s method is used to
compute a threshold based on the histogram of gray-scale
values. The threshold is then applied to categorize the im-
age into black and white pixels.

Centralization The symbol is moved to the center of the
image by its center of mass in order to compensate transla-
tions.

Symbol-Cropping After centralization, we remove ir-
relevant and noisy parts of the image to reduce the effect of
differently sized symbols. We apply two methods. Firstly
a variance-based heuristic, similar to the one used earlier,
but this time in horizontal and vertical directions. Secondly,
the left and right boundaries of the symbol are estimated as

'online handwriting recognition processes path trajectories
rather than static scanned images

the 3rd and the 97th percentile of the x-coordinates of the
black pixels respectively. The bottom and top boundaries
are identified analogously.

Resizing Finally, we resize the image to the uniform size
of 20x30 pixels by antialiasing. By this means, identical
symbols should have nearly the same size, and, essentially,
we achieve scale invariance to some degree.

7
F

Figure 2: Preprocessing steps: Original, Horizontal Crop-
ping, Binarization, Centralization, Symbol-Cropping, Re-
sizing.

4 Feature Extraction

Feature extraction is the next stage of the classification pro-
cess. The features used can be easily extracted due to the
extensive preprocessing. There are also only two different
types of features. These are explained in the following.

Pixel Gray-Scale Value The first type of features are
the gray-scale values of the image resulting from the pre-
processing. The images have 20x30 pixels, so there are 600
pixel features in total. These are intended to represent the
general shape of the digits.

Zone Gray-Scale Value The second type of features are
also gray-scale values. These are extracted during prepro-
cessing after the symbol gets centralized. The basic idea
is to lay a coarse grid over the image and use the aver-
age gray-scale value of the resulting zones as features. In
the actual implementation, the image is resized to 14x14
pixels and their value is extracted. This amounts to 196
zones features. The purpose of this type of feature is to
distinguish between similar shapes by properties removed
through symbol cropping.

S Approaches for Handwriting Adaptation

Handwriting adaptation is the final and central stage of our
system. In contrast to static handwritten digit recognition
systems, we utilize the similarities between samples of the
handwriting of one user to improve the classifier’s perfor-
mance particularly on this user’s set of samples.

One of the inherent challenges of adaptation is how to
model and obtain handwriting specific information for a
new person. The naive approach is clustering the samples
and assigning a class to each cluster. However it is difficult
to get an accurate clustering in a real-world application. So
a similar method is used which places similar samples near
each other in a low-dimensional space. This well-known
method is called subspace embedding. Another way to uti-
lize the similarities of a user’s samples is bootstrapping.
The idea of bootstrapping in this case is to classify only the
certain samples at first and then use these samples as if they

were annotated samples to improve the further classifica-
tion. This method is utilized in both Best-First techniques.

Another challenge is how to integrate the similarity in-
formation into the classification process. One possibility
is to model it as additional features. But it is not really
clear how to make these features invariant to the user’s spe-
cific differences and the weighting of the additional to the
original features is difficult to handle. A simpler way is to
directly modify the classifier’s probabilities of class affili-
ation based on the similarity information. This is also the
method utilized in all three adaptation techniques, which
are proposed in the following.

A further common denominator is the use of an Support
Vector Machine as an initial classifier derived from a train-
ing set of annotated samples. This classifier is mostly used
to calculate the probabilities of class assignment for sam-
ples. So an additional challenge is to modify mainly the
samples which the classifier is unsure about. We handle this
by weighting the modifications of the following techniques
by the certainty of the classifier. To determine this certainty
a function based on the class probabilities is needed, which
is the entropy function in our case.

5.1 Subspace Embedding

The first approach introduced is subspace embedding. The
idea of subspace embedding is to reduce the dimensions
of the feature vectors of the user’s samples to a few con-
cepts. This can be achieved through principal component
analysis [Jolliffe, 1986]. Identical digits are likely to have
the same concepts so they are also likely to be positioned
near each other in the subspace. This is used to modify the
sample’s probabilities of class affiliation in order to shift
the classification of unsure samples in the right direction.
To be more concrete, for every sample a number of nearest
neighbors are used for the modification. The influence of
every neighbor decays based on their quadratic euclidean
distance to the considered sample. The overall magnitude
of the adjustments made to the probabilities also depend on
the certainty of the sample’s classification. To estimate how
sure the classifier is about an assignment the normalized en-
tropy over the probabilities of class affiliation is used. After
these adjustments, the class with the highest probability is
assigned to the sample.

5.2 Best-First-One

The Best-First-One method initially classifies all samples
of the user set to gather the best samples, i.e. the ones
which the classifier is most certain about. The certainty
of a sample is identified by the entropy of it’s probabilities
of class assignment. A threshold is used to split the safe
from the unsafe samples. However a specific fraction of
the samples is always assumed as safe. These samples are
treated as annotated examples and added to the training set.
A classifier is created from the enhanced training set. The
remaining samples are then classified with this new classi-
fier.

5.3 Best-First-Two

The Best-First-Two technique is very similar to the Best-
First-One method. The difference is that the safe samples
are not added to the initial training set but used to create
a new classifier only based on these samples. The classes
for the remaining samples are then determined by the sum
of weighted probabilities of both classifiers. The weights
are appointed according to the entropies of the probabili-
ties. This way the classifier, which is more sure about the

class of a sample, is taken into account to a further extend.
A direct advantage of this variation is that only the cer-
tain samples have to be learned and not the entire training
set. This results in shorter runtimes, especially if the initial
training set is large.

6 Evaluation

We evaluated the three different customization methods
and the standard classifier, which does not use user spe-
cific information. Therefore, a user set was chosen as the
test set, a training set was sampled from the remaining user
sets, and the precision scores of the four techniques were
measured on the test set. This process was repeated for
each of the 26 user sets similar to a leave-one-out evalua-
tion setting. The results were averaged over all repetitions
for every method and training size. The implementation
was done in Python. The libraries NumPy?, SciPy?, scikit-
learn* and Pillow were utilized. In the following, the pa-
rameters used for each method are listed.

Support Vector Machine The Support Vector Machine
classifier used a polynomial kernel with a degree of three.
Probability calculations for class affiliation was enabled.

Subspace Embedding The feature vectors were re-
duced to three dimensions. The three nearest neighbors
were used to adjust the sample’s probabilities. The en-
tropies were normalized with the factor 1/7.

Best-First-One/Two The threshold chosen to separate
the safe from the unsafe samples was 0.9. Ten percent of
the samples of the user set were always assumed to be safe.

6.1 Data Set

A custom data set was used since most standard data sets
do not provide user information associated with their sam-
ples. However this is necessary for the adaptation tech-
niques to work. The data set was gathered using test forms
with boxes for every symbol. It consists of 26 sets of dif-
ferent users. Every set contains 10 annotated examples for
the digits 0-9 and the comma symbol. So there are 110 ex-
amples for each user in total and the data set amounts to
2860 samples overall.

6.2 Results

The results are plotted in Figure 3 with the size of the train-
ing set as the x-axis and the average precision as the y-
axis. All adaptation methods exceed the standard classi-
fier’s curve regardless of the training set size. The distance
between the standard classifier and the customization meth-
ods at a training set size of 100 amounts to about four per-
cent. For the training set size 1000 the difference is still
around one to two percent for all adaptation techniques.

Table 1 presents concrete numbers for these experiments.
Values printed in bold type show the respective best ap-
proach for each training set size. Underlined values mark
statistically significantly better precisions compared to the
standard classifier (paired t-test, p-value <0.05).

Subspace embedding and Best-First-One provide very
similar performance on all training set sizes. The preci-
sions provided by Best-First-Two are also similar for the
sizes 100, 200, 600 and 700. On the sizes 300 to 500 Best-
First-Two was outperformed by the other two approaches
by around 0.5%, but it surpasses them on the sizes 800 to
1000 by about the same amount.

“http://www.numpy.org/
3http://www.scipy.org/
*http://scikit-learn.org/

o
©
o

o o o o

0 © © ©

© o N &
T T T T

o

©

o
Ny

Average precision score

o

©

~
T

— Standard classifier

- - Subspace Embedding
Best-First-One 1
Best-First-Two

o

0

N
T

100 200 300 400 500 600 700 800 900 1000
Size of training set

Figure 3: Average precision of the different methods for
several training set sizes

Table 1: Table of average precisions. Bold values show the
best approach for each training set size. Underlined values
are significantly better compared to the standard classifier.

Size of Standard Subspace Best-First- Best-First-
training set classifier Embedding One Two

100 0.815 0.858 0.854 0.856
200 0.875 0.895 0.895 0.894
300 0.893 0.908 0.907 0.903
400 0.905 0.919 0.920 0.913
500 0.910 0.924 0.927 0.919
600 0.913 0.930 0.931 0.929
700 0.915 0.932 0.932 0.933
800 0.921 0.935 0.936 0.940
900 0.924 0.935 0.935 0.940
1000 0.921 0.933 0.936 0.939

6.3 Discussion

Figure 3 shows that the adaptation methods provided con-
sistently superior precision in comparison to the standard
approach. The improvements were statistically significant
in 20 out of 30 cases (see Table 1 for details). Hence it can
be assumed that the proposed methods are able to adapt
to handwritten digits and commas of a new handwriting in
order to improve their performance. In summary, all tech-
niques provide considerable improvements to the standard
classifier by about the same extend and are recommended
for further investigation.

7 Future Work

In this work, we applied a special subspace embedding
technique, different methods of dimensionality reduction
like Isomap projections could be considered for a disper-
sion of different symbols in the subspace. Future work can
further investigate other approaches to weight the certain-
ties of the initial recognition, or the distance functions used.
For the Best-First methods one important parameter is the
optimal threshold to separate certain samples from uncer-
tain ones. The Best-First-Two approach could possibly be
further enhanced by more precise weighting between the
two classifiers, and incorporating more complex features,
confer, for example, [Leibfried, 2012].

8 Summary

We proposed three approaches for handwriting adaptation
of digit recognition: one approach that applies subspace
embedding and two approaches that are similar to boot-
strapping. Our experiments showed that adaptive tech-
niques can enhance the precision of the standard classifier
significantly which emphasizes the importance of adapta-
tion in this domain. The overall precision scores of the
three approaches were comparable. Their notable improve-
ments over an already good baseline ranged from about one
to four percent.

Acknowledgments

We thank Alexander Hornlein and all participants for their
help with the data set.

References

[Chapelle et al., 2002] Olivier Chapelle, Jason Weston,
and Bernhard Scholkopf. Cluster kernels for semi-
supervised learning. In Suzanna Becker, Sebastian
Thrun, and Klaus Obermayer, editors, NIPS, pages 585—
592. MIT Press, 2002.

[Cortes and Vapnik, 1995] Corinna Cortes and Vladimir
Vapnik. Support-vector networks. Machine Learning,
20(3):273-297, 1995.

[DeCoste and Scholkopf, 2002] Dennis DeCoste and
Bernhard Scholkopf. Training invariant support vector
machines. Machine Learning, 46(1-3):161-190, 2002.

[Jolliffe, 1986] Tan T. Jolliffe. Principal component anal-
ysis, volume 487. Springer-Verlag New York, 1986.

[Kliigl et al., 2012] Peter Kliigl, Martin Toepfer, Florian
Lemmerich, Andreas Hotho, and Frank Puppe. Col-
lective information extraction with context-specific con-
sistencies. In Peter A. Flach, Tijl De Bie, and Nello
Cristianini, editors, ECML/PKDD (1), volume 7523 of
Lecture Notes in Computer Science, pages 728-743.
Springer, 2012.

[Leggetter and Woodland, 1995] Chris J. Leggetter and
Philip C. Woodland. Maximum likelihood linear regres-
sion for speaker adaptation of continuous density hid-

den markov models. Computer speech and language,
9(2):171, 1995.

[Leibfried, 2012] Felix Leibfried. Recognition of hand-
written digits. Diplomarbeit, University of Wiirzburg,
Wiirzburg, September 2012.

[Mandel et al., 2011] Alexander Mandel, Alexander
Hornlein, Marianus Ifland, Edeltraud Liineburg, Jiirgen
Deckert, and Frank Puppe. Cost analysis for computer

supported multiple-choice paper examinations. GMS Z
Med Ausbild, 28(4):Doc55, 2011.

[Seewald, 2012] Alexander K. Seewald. On the brittleness
of handwritten digit recognition models. ISRN Machine
Vision, 2012:10, 2012.

[Szummer and Bishop, 2006] Martin ~ Szummer and
Christopher M. Bishop. Discriminative writer adapta-
tion. In I0th International Workshop on Frontiers in
Handwriting Recognition (IWFHR), 2006.

[Yarowsky, 1995] David Yarowsky. Unsupervised word
sense disambiguation rivaling supervised methods. In
Hans Uszkoreit, editor, ACL, pages 189-196. Morgan
Kaufmann Publishers / ACL, 1995.

