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Abstract

We present the hyperbola recognition problem in
Ground Penetrating Radar — GPR - data as an
example for pattern recognition in complex engi-
neering sensor data. Traditionally, GPR data are
analyzed manually by human experts in a tedious
and time-consuming process, €.g., to deduce the
positioning of linear object underneath roads just
before reconstruction works take place. For
supporting this process using Machine Learning
methods, one needs to have accurate ground truth
data to derive models out of it. As an accurate
acquisition of such annotated data is impossible
even for a quasi-ideal case, we annotated 700
radargram images manually. This paper presents
and discusses the outcomes of this study and con-
cludes, that using just a single evaluation criteria
to compare performances of GPR-focused Ma-
chine Learning methods might not be enough.

1 Introduction

Ground Penetrating Radar (GPR) is used to investigate
the shallow surface, e.g., to find buried landmines [Wil-
son et al., 2007] or pipes and cables underneath (road) sur-
faces. Our current data is measured using an on-site vehicle
equipped with a multi-channel array (multiple ‘channels’
are recorded at different frequencies and relative positions
while the vehicle is moving) and illuminates structures in
subsoil down to about 3-4 meters in depth. We are aiming
at assisting the analysis process by means of probabilis-
tic methods, while a special focus is put on the identifica-
tion of pipes and cables of various types (e.g., PE, metal,
stoneware) which are represented as hyperbola-like struc-
tures on measured radargram images (see Figure 1).

One ultimate goal of GPR data analysis is the derivation
of supply maps, that is, maps of buried objects of a cer-
tain kind. The creation of those maps is required, e.g., as
municipalities, according to one of our project partners and
at least in Germany, seldomly have a single map of their
buried structures. Instead, maps and plans of buried pipes
and cables are cluttered and only available in a distributed
manner, and can only be partially gathered and combined
when requested by all parties owning buried objects, such
as water supply companies, power supply companies, and
telecommunication companies. In any case, those existing
maps may be inaccurate and not recent, causing additional
problems when highly accurate maps are required. This pa-
per represents a first step towards to (semi-)automated cre-
ation of such supply maps, by means of developing super-

vised Machine Learning methods for an automated detec-
tion of such buried objects. The overall process can be split
up into two distinct aspects: (a) the detection of individual
objects in radargram images, and (b) the creating of supply
maps out of individually detected object locations. This
work focuses on the first aspect, whereas the latter aspect
(b) can be tackled, e.g., by solutions as presented in [Chen
and Cohn, 2011]. The collection of individual radargrams,
resp. cross-sections, e.g., of a road, is done as follows: A
specialized measurement vehicle drives at a constant speed
along the x-axis (cf. Figure 1a) and measures a radargram
image. This image visualizes reflected energies / intensi-
ties at discrete time points (y-axis). While in theory, one
is able to induce the appearance of a radargram image out
of known subsoil structures (e.g., by means of a numer-
ical simulation software, see [Giannopoulos, 2003]), the
reverse action - the deduction of subsoil structures out of
radargram images - is a highly non-trivial task in real-world
situations for a variety of reasons: (a) hyperbola reflections
get distorted by supplementary reflections from horizontal
layer breaks (see Figure 1, on the top right), (b) the signals’
energy decays with increasing depth, resulting in lower (vi-
sual) contrasts (see our preprocessing in Figure 2 at the bot-
tom of area 7), (c) the pipes’ type and fillings (e.g., PE pipes
filled with water, or being empty) causes multiple vertical
reflections, (d) the depth—dependent energy decay of emit-
ted radar wave requires preprocessing techniques and cause
reflections to transition into background clutter at increas-
ing depths.

Supporting the hyperbola recognition task by means of
supervised models requires us of having a labeled set of
radargram images at hand.

We will take the scenario of applying patch-based image-
classification techniques as a running example. This re-
quires us of having an a priori labeled dataset which con-
tains patches (fractions of a radargram image) being la-
beled positive (patches containing hyperbola shapes) and
negative (clutter; background noise).

For our data being measured on a test-site, GPS mea-
surements exist for all pipes buried therein. Though one
intuitively assumes that this GPS information helps for the
creation of ground truth data (inducing the positions of hy-
perbola apexes out of the known subsoil structure), the op-
posite situation is the case, as (a) the heterogeneity of soil
makes a consistent estimation of the actual pixel-depth im-
possible, (b) an unsteady movement of the vehicle needs
to be interpolated and aligned to the radar traces, result-
ing in inaccurate horizontal pixel positions, (c) given the
pipe identification task, multiple reflections occur, e.g., for
water-filled pipes, while only the top-most reflection hyper-
bola can be derived from the GPS ground truth data. What



(a) GPR Data Collection (b) Real-world radargram (excerpt)
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Figure 1: Hyperbolas are caused by steady movement of a
radar vehicle across a buried pipe (a). At each horizontal
position, an A-Scan (column) is measured, whose stacked
visualization results in so-called radargrams, or B-Scans,

(b).

immediately follows is an inaccuracy in pixel position in
the ground truth data obtained from the given GPS data.
This is the aspect we aim to improve by manually altering
the apex positions derived from GPS annotations to match
visual phenomena in the underlying radargram image. This
paper is only concerned with obtaining and analyzing ac-
curate hyperbola annotations at pixel level; the real-world
deduction of pipe positions after identifying ‘enough’ can-
didate apex positions is not considered and can be achieved,
e.g., utilizing methods as given in [Chen and Cohn, 2011].
Instead, this paper analyzes the outcome of these manual
annotation sessions according to the following aspects:

1. Is there a measurable difference between human
annotation behavior for GPR data, and if so, can it
be related to a certain aspect of the data?

While some reflections are clearly visible in the mea-
sured data, other cases (e.g., multiple reflections
caused by the material of the pipe) exist, for which it
is less intuitive to decide, whether or not those should
be annotated. The question is now, to what extend hu-
mans agree on the visibility of these visual phenom-
ena.

2. Is it possible to gain an annotation set for complex
engineering data which is inter-humanly agreed,
or is the quality of annotations subject to personal
taste?

If the annotation task can be identified as being related
to personal taste, the question arises how the suitabil-
ity and correctness of automatized methods trained on
human tastes should be addressed.

2 Related Work

Relevant work is summarized from both the Machine
Learning and Psychological perspective, with special em-
phasis on applications in real-world scenarios and possibil-
ities for automatization, for which the human factor was
identified to influence final results on the applicability of a
technique.

2.1 Machine Learning Techniques for GPR Data
Interpretation

The ultimate goal of GPR analysis is the derivation of com-
plete and accurate tomographies based on usually just a
small set of radargrams [Simi et al., 2008; Chen and Cohn,
2011]. Before radargram images are fed into an auto-
mated algorithm, they are usually preprocessed. This pro-
cess is usually visually [Pasolli ef al., 2009; Busche e al.,

2012] or methodologically [Chen and Cohn, 2010; 2011;
Janning et al., 2012a] driven.

One out of three different approaches for hyperbola de-
tection in radargram images can be distinguished: (a) Es-
timation from sparse data [Chen and Cohn, 2010; Jan-
ning et al., 2012a], (b) Brute-force methods, e.g., the
Hough Transform, [Simi et al., 2008], and (c) Supervised
machine-learning, e.g., Neural Networks for patch-based
classification, for which training data needs to be care-
fully collected beforehand (as we do here) [Al-Nuaimyer
al., 2000; Birkenfeld, 2010]. Our analysis discussed here
influences each of these approaches, as those approaches
need to be evaluated against some ground truth knowledge
which, as we will show, is not obvious to obtain.

2.2 Psychological Aspects covered in this paper

For conducting manual annotation tasks, generally two
groups of people can be distinguished: non-specialized hu-
mans having weak prior knowledge [Nowak and Riiger,
2010], and domain experts [Mello-Thoms, 2006; McCarley
et al., 2004; Volkmer et al., 2005]. Many works were iden-
tified for other domains, e.g., videos / keyframes [Volkmer
et al., 2005] or texts [Nowak and Riiger, 20101, the one
most similar being the one presented in [Klebanov et al.,
2008] for the text domain. No such work were identified
for partial image annotations in the domain of complex en-
gineering sensor data.

In the image domain, validating and adjusting previ-
ously defined and given annotations requires human an-
notators to establish a best-matching hypothesis, explain-
ing which annotations correspond best to which structure
in the raw data [Gregory, 1980]. Making final judgments
on the suitability of an interpretation (being ones own or
someone else’s) is a non-trivial problem [Cavanagh, 2011;
Nowak and Riiger, 2010], as mistakes may easily affects
human life (e.g., wrong interpretations in medical screen-
ing [Mello-Thoms, 2006] or x-ray luggage screening at air-
ports [McCarley et al., 2004]). Multilayer interpretation of
image (patches) by means of Neural networks [Sermanet ez
al., 2009; Birkenfeld, 2010] is well known in the Machine
Learning Community, while a thorough survey on their mo-
tivation based on the functioning of the brain is presented
in [Rolls, 2012].

3 GPR Data Analyzer & Annotator

We first need to discuss GPR data preprocessing steps, as
those might have an effect on the later visibility of sub-
soil structures (cf. Figure 2 on the left). The discussion
continues with the presentation of our specialized GPR an-
notation software as shown in Figure 2 on the right which
human annotators used to perform the manual annotation
task.

3.1 Data Preprocessing

A multi-stage filter chain (presented in Figure 2 on the left)
was used in the following way: the intensity values were
modified to (1) have zero mean at each position (A-Scan)
and (2) zero mean at each depth. Intensities are increased
in a depth-dependent manner (3) to compensate the wave
propagation loss. The characteristic reflection pattern was
augmented using a pattern correlation filter (4): A sliding
window of fixed length was moved along an A-Scan, calcu-
lating a correlation score against the sequence (0q4, 15, 04)
(the subscript denotes the number of repetitions), result-
ing in a new intensity value used for the following analy-
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Figure 2: Our GPR Analyzer and Annotator preprocesses data as shown on the left. After preprocessing, a GUI shows
basic information on individual pipes / hyperbolas and is used to interactively perform CRUD - Create, Retrieve, Update

and Delete - operations for hyperbolas.

sis. Intensity values for an A-Scan are adjusted (5) to have
variance 1. Step (6) repeats step (1). Finally, (7) a depth-
dependent windowed moving average subtraction filter is
applied.

All but the pattern correlation filter are non-parametric;
the pattern correlation filter corresponds to a rectangular
function which approximates the vertical reflection pattern
of a pipe [Busche et al., 2012].

3.2 Interactive Controls

Given an initial seed annotation set (a list of pixel posi-
tions) and constant soil permittivity, our GPR Data An-
notator stacks an interactive layer to create, modify and
delete hyperbola annotations (yellow / bright on the Fig-
ures) on top of a raw radargram visualization panel. On
the top pane, it is both possible to adjust the soil permit-
tivity (using a homogeneity assumption; used to adjust the
curvature of hyperbola annotations) and to jointly adjust
the initial positions of all annotations (since close-by pipes
cause distortions which are hard to distinguish). Hyperbola
annotations are highlighted based on the mouse position,
can be drag-dropped and contain further information (e.g.,
its type) shown in tabular form at the bottom. Optionally,
A-Scans may be visualized (left).

4 Manually Annotating GPR Data

The annotation process of 350 radargram images in total
was designed while having potential inter-human disagree-
ments in mind. We aimed at having at least two annota-
tion sets per radargram at the end, thus finally resulting in
700 images to be annotated. For the annotation process
being repetitive, tedious, and long-lasting (an average of 4
minutes per image results in estimated 46 hours) and thus
error-prone, we splitted the process into two phases, also
allowing to incorporate feedback after round 1.

4.1 Annotation Protocol

The annotation protocol for the human annotators was as
follows: Initially, a radargram image along with a seed set
of annotations (‘annotation set’ in the following) obtained
by the GPS measurements, were visualized on the user in-
terface. Though an initial inspection of GPS annotation
sets showed inaccuracies of up to 15cm in both horizontal
and depth / vertical image direction (1cm does not scale
equally on both axes), those GPS seed annotations were
shown, because the test site contains many near-by located

pipes being represented by interfering and intersecting re-
flection patterns whose distinction is challenging even for
human experts (see the right area in the radargram in Fig-
ure 2). The exact location of those near-by pipe apexes
was therefore determined by a ‘radargram-wise global best
visual match’ of all hyperbola annotations being present,
as some hyperbola reflections were clearly visible (see the
center of the radargram therein). After globally adjusting
the annotation locations, individual positions of hyperbola
annotations were altered.

4.2 Round1

In the first phase, 6 human annotators were annotating 484
radargrams in total, spending 2 days on this task. The group
of human annotators was composed of both domain experts
(researchers working on the data on a daily basis) as well
as semi-professionals (students) working with the data. 142
radargrams were annotated once, while two annotation sets
were gained for 171 images. On average, 35 (£3) radar-
grams per channel (1 out of 14 antenna configurations mea-
sured by the vehicle per measurement run) were annotated,
while each human annotator saw each channel at least once
(on average, 5.9 3.8 radargrams / channel). The absolute
amount of radargrams per human annotator ranged from 31
to 162.

4.3 Qualitative Results for Round 1

Feedback on the quality of annotation sets was gathered
using a structured online feedback questionnaire, show-
ing radargrams row-wise either in a comparison-style view
for two existing annotation sets, or in a single radargram
view, if just one annotation set existed. Three experts act-
ing as human ‘judges’, two of which were also annotating
the radargrams beforehand, the other one being a highly
skilled GPR data analyst working at our project partners
company, were visually investigating the quality of the an-
notation sets as follows. When comparing two annotation
sets, (a) a vote could be casted, ranking one set over the
other. Marking (b) a pair of annotation sets as being ‘prob-
lematic’ examples triggered a discussion with the human
annotators before round 2. For all annotation sets, assign-
ing the incomplete label to a radargram marked them as be-
ing a candidate for re-annotation in phase 2, if at least two
votes ranked that set higher than its competitor. A wrong
label removed the set from further analysis.

The fact, that an annotation set is ‘accurate’ given its
radargram, was inferred if neither an incomplete nor wrong



Annotators’ quality ‘ 1 ‘ 2 ‘ 3

accurate 26 16 15
incomplete 57 45 37
total annotations 227 250 229

Table 1: Final counts of annotation sets along with their
judgement (‘accurate’, ‘incomplete’) obtained for radar-
gram images by three human annotators 1, 2 and 3 after
both annotation rounds.

label was assigned by any judge (this held true for 39 an-
notation sets, representing 8% of all annotation sets). We
fed all 113 annotation sets (23%) which were marked as
being incomplete but superior over the other into the set of
radargram images to be annotated in phase 2.

From this first feedback cycle we got first evidence that
obtaining a single, consistent and inter-humanly agreed set
of annotated radargrams is much more challenging than
previously expected. Therefore, we decided to assign anno-
tation quotas, a fixed amount of radargrams to be annotated,
to each human.

4.4 Round 2

After further analysis on quality and comparability of the
judged results from round 1, we invited only 3 (of all 6)
humans to annotate the remaining part, each having a dif-
ferent quota. The set of radargrams contained all remain-
ing and incompletely labeled radargrams from round 1. On
average 27 (13.2) radargrams per channel were annotated,
while each human annotator saw at least 2 images per chan-
nel (9 on average, +4).

4.5 Feedback and results from Round 2

We used the same feedback mechanism as used in round
1 for gathering feedback from the same judges, while this
time only one of them also annotated the radargrams. 31
annotation sets (8%) were inferred to be ‘accurate’, while
still 69 annotation sets (18%) are marked as being incom-
plete, but preferable over the other.

4.6 Result for both Rounds

Taking jointly both annotation rounds for just the three an-
notators from round 2 into account, we finally ended up
with the counts of annotation sets per human annotator
as shown in Table 1. As an example, annotator 3 labeled
229 radargram images in total, for which 15 (6.5%) images
were judged accurate, 37 (16.2%) were judged incomplete.

The peak of accurate annotations of annotator 1 is in line
with Gregory’s [Gregory, 1980] hypothesis who argues that
prior experience strongly influences the perception and, in
direct consequence, the quality of annotations (annotator 1
is more familiar with diverse sets of radargram images than
annotators 2 and 3).

S Analyzing and Discussing Human
Annotation Behavior

To answer our questions stated in the beginning, we will
now have a closer look at the results of the visual judg-
ments with respect to its potential later automatization. The
following error types are qualitatively introduced after hav-
ing investigated both, all obtained annotation sets, and prior
GPS annotations, and shall guide both our current analysis
and future ideas and developments while developing algo-
rithms for automatic GPR image data interpretation.

(c) Type B
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Figure 3: Analysis of humans’ annotation behavior and

qualitative categorization to the proposed error types.

1. Type A Errors are defined as being non-annotated
hyperbolas in radargram images. Their counter phe-
nomena, annotated hyperbolas without visual evi-
dence, also falls in this category.

2. Type B Errors denote annotated hyperbolas having a
locational apex error of a few pixels compared to the
underlying radargram image.

3. Type C Errors correspond to a wrongly assigned cur-
vature (estimated soil permittivity) information.

Most related work refers to Type A errors by mea-
suring accuracy [Wilson et al., 2007; Chen and Cohn,
20101, while Type B errors relate to RMSE — Root Mean
Squared Error — scores on the apex positions (for which
a prior matching of identified apex positions to the exist-
ing ground truth data is required) [Janning er al., 2012a;
Pasolli et al., 2009; Janning et al., 2012b]. Type C er-
rors correspond to soil permittivity estimation [Simi et al.,
2008]. We presented a viable solution for its estimation
once the apex is found [Busche ef al., 2012] and will not
further focus on this error type / task here.

Our current, GPS-based annotation sets contain all three
kinds of errors: (a) Type A errors are present through re-
flections, (b) Type B and Type C errors correspond to soil
heterogeneity.

Figure 3 demonstrates a qualitative categorization of er-
rors which were still contained in our human annotation
sets after phase 1. In the Figure, each row corresponds
to the same human annotator, while the same radargram
patches are each used to visualize different annotation phe-
nomena.

5.1 Assessing Differences in Annotation
Behavior

To answer our first question, whether or not a measurable
difference between human annotation behavior exist, we
will first have a look at the quantity of pipes annotated
(Type A errors), while thereafter having a closer look at
Type B errors.

As our human annotations were derived from seed GPS-
based annotation sets (annotations denoting previously
known objects), we are able to measure two characteristic
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Figure 4: Inter human analysis of annotation behavior:
The absolute differences exceed 12 hyperbolas (not shown
here), resulting in diverging model performances at a later
stage.

Visibility Loss | PE Stoneware  Steel
Round 1 83% 41% 57%
Round 2 72% 36% 50%

Table 2: Percentage of pipe (type) annotations which are
still present after the individual annotation rounds in the
manual annotation sets (humans were able to identify vi-
sual evidence for this pipe type).

quantities for a given radargram, if two annotation sets are
present: (a) For previously existing annotations, calculating
the difference between the amount of removed pipes in the
both annotation sets (by two different human annotators)
indicates how well the final annotation sets match the data
/ the visual presence of reflection phenomenas. As an ex-
ample, if both humans agreed on removing the same 5 an-
notations (denoting the same pipe annotations) from their
annotation sets, the absolute difference of both annotation
set sizes is 0. One can deduce that they both agreed on the
fact that for 5 pipes, no visual evidence exists, whereas for
all other pipe annotations, a corresponding visual evidence
existed in the radargram. (b) For previously unknown hy-
perbolic shapes that have been added to the annotation sets,
e.g., to mark reflections, measuring their absolute differ-
ence gives insights in whether or not these are identifiable
by humans (distinguishable for background clutter). Take,
as another example, a pair of annotation sets whose addi-
tional hyperbola annotations differ by 3: Then, one anno-
tator was able to identify 3 more hyperbolic shapes on the
radargram image.

Figure 4 visualizes the counts of differences between the
size of two annotations sets for the same radargram image.
Therein, Pipe Annotation denotes case (a) from above, and
Reflection Annotation denotes case (b). We deduce from
the high counts for low absolute differences in the pipe re-
flections case that direct pipe reflections are quite notice-
able for humans. Contrary, the rather high counts for larger
differences for Reflection Annotations (cf. Figure 3 (a) and
(d)) indicate that the annotation of reflections is either more
likely subject to personal taste, or is subject to ambiguity
(e.g., the contrast is too low for humans to reliably distin-
guish them from the background).

As we have now identified a general difference depend-
ing on the type of annotation, a closer look at the fraction
of remaining annotations per pipe type (the amount / kind
of annotations not being removed) reveals certain notable
characteristics, as shown in Table 2.

As can be seen, e.g., only 41% of the stoneware annota-
tions being present in the GPS-based annotation sets were

GPS vs. human vs.

human human round
PE 18.3+11.1 8.2+11.0 1
18.7 £ 13.7 7.3 £8.8 2
Stone- 21.6 £16.6 6.6 £4.9 1
ware 20.5£19.0 7.3+6.4 2
Steel 23.2£15.7 9.7 £14.6 1
22.7+13.8 12.2 +16.8 2

Table 3: Averaged locational distances between pipe an-
notations in different annotation sets. Clearly visible is
an inter-human agreement that pipes are not located at the
GPS positions (distances to GPS are large), but at other lo-
cations (inter-human distances are small)

still existing after the first annotation round. Since humans
were asked to retain only visible annotations, one may ei-
ther deduce that (a) identifying these types is more chal-
lenging, (b) the current preprocessing techniques are not
optimal for those pipe types, or (c) their absolute depth
and filling or surrounding material causes masking effects,
which are, compared with Figure 4, rather consistent for
the individual pipe types.

For sure, some of these differences are also influenced by
experience and familiarity of the human annotators while
working on GPR data. Before answering the second ques-
tion, we are having a closer look at the individual locational
differences when manually adjusting the apex positions for
two cases (shown in Table 3): (a) The GPS vs. human
comparison computes for all humanly created annotation
sets for all annotations therein the RMSE / euclidean dis-
tance against the apex positions from the ground truth de-
rived from the GPS measurements. (b) The human vs. hu-
man comparison computes RMSE differences on retained
pipe annotations to compare how the individual manipu-
lation of hyperbola apexes matches between humans. In
other words, for both cases, we compare the distances of
hyperbola apexes (type B errors) by assuming that lower
distances correspond to more accurate annotation qualities,
as annotations more closely match visual phenomena. This
already gives first insights in inter-human agreements, that
is, how close individual apex positions in two annotation
sets created by humans for the same radargram are.

Even though these numbers are biased against the
smaller quantity of pairs of annotation sets contained in
the human vs. human comparison, a clear trend towards
more consistent and accurate apex estimations for the inter-
human comparison case is visible.

5.2 Gaining Inter-Human Agreed Annotation
Sets

To answer our second question, whether it is possible to get
an inter-humanly agreed annotation set for complex engi-
neering data, we may both refer to table 3, indicating that
there is a rather low average pixel-distance between human
annotation sets, and present an indicative result when com-
paring the rankings of judges on their own annotation sets,
that is, having a look at whether a judge favourizes his own
annotation set over an annotation set of another human an-
notator.

Even tough we have only limited data (there are just
three cases (2 annotators have also been judges in phase
1, whereas only 1 annotator was a judge in phase 2), we
may take the following results as an indication: Ones own



annotations in round 1 were preferred by the first annotator
in 77/96 (80%), the other in 46/66 (70%) of all cases. Less
indicative is round 2, for which 16/28 (57%) annotations
were preferred.

Even though we are able to derive that humans tend to
favourize their own annotation sets, relating these to the
appropriateness or suitability of the annotation sets to the
hyperbola identification task is not easily possible: As we
have seen above, a rather high deletion rate of annotations,
esp. for certain pipe types, could be observed, even though
it was well known to all participants that those pipes actu-
ally exist. The only valid conclusion which may be drawn
here is that ones own inferpretation on how to solve the
pipe annotation task differs in a constant way between hu-
mans.

6 Impact of the Labeling Accuracy for
Machine Learning Algorithms

We evaluated the quality of our annotation sets by perform-
ing a simple classification experiment using a state of the
art classifier for patch-based classification, namely a Con-
volutional Neural Network as implemented in the eblearn
library [Sermanet er al., 2009]. The network structure is the
well-known Lenet-5 network. We note that we are not pri-
marily seeking for an optimal classification result, but aim
at validating the suitability of the annotation sets, that is,
whether the annotated apex locations obey an underlying
structure in the radargram image which is easy to general-
ize.

Using the set of radargram images for which we obtained
‘accurate’ annotations, we created a dataset and splitted it
in a leave-one-out fashion per individual radargram image.
One radargram image was used for validating the classifier,
whereas performance scores are reported on a test radar-
gram image.

We used a grid search to determine an optimal hyperpa-
rameter combination for patches of size 32 x 32 as follows:
The set of learning rates was set to {5,1,0.1,0.5,0.05} -
10~3, while different /1 and [2 regularizations, each being
set to {0,1072,1073, 104}, were tested as well. Positive
training instances were created by using all patches being
centered at annotated hyperbola apex positions, as well as
using their neighbourhood, given that the amount of neigh-
boring pixels in those patches were overlapping by 95%.
Patches with an overlap between 95% and 30% were dis-
carded to not introduce class boundary ambiguities. Neg-
ative training instances were randomly sampled from the
remainder of the radargram image at a 2% rate, resulting
in a class imbalance of approx. 1 : 7, that is, seven times
as much negative training instances than positive training
instances, resulting in a baseline accuracy for a constant
classifier being about 87.5%.

Table 4 shows the performance assessments for two
dataset variants for two techniques to derive an optimal
model given the performance scores on the validation set.
The patches used to create the dataset may either be nor-
malized, resulting in a pixel contrast range per individual
patch over the whole greyscale from [0, 255], or not nor-
malized, for which the raw patches as present in a prepro-
cessed radargram images are used. The algorithm as im-
plemented in eblearn is trained by minimizing an ‘energy’
value. We determine a model to be used for evaluating its
performance on the test set on both, the minimal energy
value on the validation set (Accuracy (energy)), as well as

on the maximal accuracy score on the validation set (Ac-
curacy (correct)). Performance scores in Table 4 are both
showing accuracy scores for comparability.

Our main aim is to compare the lift of the accurate an-
notations over those ones obtained from the GPS measure-
ments. What can be seen is that for all four combinations,
when combining both dataset variants with both perfor-
mance assessment scores, our manual annotations increase
the classifier performance. We conclude that our manually
obtained annotation sets more closely match characteristic
patterns within the radargram images, compared to those
ones as obtained by the GPS measurement.

7 Conclusion and Future Work

This paper presented our methodology in annotating 700
GPR images, representing one example for the annotation
task of complex engineering sensor data. Based upon the
initial finding that the derivation of an accurate ground truth
from a priori measured (GPS-) data is impossible for our
current task at hand, we successfully showed that humans
are able to improve the overall annotation quality. Anyhow,
due to the still large fraction of ‘inaccurately’ annotated
radargram images, we need to note that this overall process
is costly, so that the question on the generalizability of this
approach to other domains arises.

For our specific use case, we are now able to define cer-
tain subsets of the data, representing different ‘agreement
levels’ between humans, that is, proportions of annotation
sets for which a majority of the jugdes agree on their qual-
ity, as follows:

1. Validation Dataset: 57 ‘accurate’ radargram images
being well balanced between 3 human annotators
compose a small dataset for which inter-human agree-
ment exists on a high-quality annotation

2. Scale-Up Dataset: 139 incomplete, but not wrongly,
annotated radargram images allow us to simulate au-
tomated analysis in semi-observed scenarios for eval-
uating performances under presence of noisy and par-
tially ambiguous annotations.

3. Inter- / Intra-Human Consistency checks: For ei-
ther set, models can be tested on their ability to gener-
alize over either human annotators, or radargram im-
ages, in a controlled environment.

Besides of having an accurately labeled GPR data cor-
pus, we showed that the annotated proportions within the
underlying radargram images are more easily to generalize
compared to the annotations derived from the GPS data.
For reaching our goal of deriving supply maps, we are now
able to proceed with improving state of the art Machine
Learning Models for the detection of patches containing
hyperbolic structures.

For similar use cases (in other application domains), the
two main outcomes of this study are as follows: (a) Annota-
tion quality improves at the cost of introducing inter-human
disagreements to the annotations, and (b) Multiple eval-
uation metrices are desired to assess model performance.
Though the quality and thus the suitability increases in
general, the ‘human factor’ introduces ambiguities in the
ground truth data. These need to be taken into account by
designing and using evaluation measures which consider
these aspects, e.g., by using an accuracy score that consid-
ers a locational displacement of a few pixels still as being
correct.



normalized? annotation Accuracy (correct) Accuracy (energy)
true GPS 88.58 (3.72) 91.20 (1.80)
accurate 89.55 (2.90) 92.57 (1.27)
false GPS 87.00 (3.93) 90.70 (2.03)
accurate 90.21 (2.35) 92.41 (2.19)

Table 4: The high quality of our manually obtained annotation sets is validated by performing a simple classification
experiment comparing the annotations obtained by the GPS measurements with the ones obtained during the manual
annotation rounds. Figures show accuracy scores and their variances in brackets.
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