
Exploration of Spreadsheet Formulae with Fency

Andrea Kohlhase and Alexandru Toader
Jacobs University Bremen

D-28717 Bremen, Germany
a.kohlhase and a.toader @jacobs-university.de

Abstract

Spreadsheets are well-known to be frequently-
used but error-prone communication devices.
They are useful since they are active (e.g., auto-
matic computation), provide a cognitive notation
system drawing on visualizing values, meanings
and relations at the same time (enabled by la-
beled, color-coded grids), and provide easy-to-
use domain-specific operations (e.g., computa-
tional functions). The latter, in particular, is en-
abled by the text-style formula format in spread-
sheets, in which variables are replaced by cell
references. For simply-structured formulae this
works very well. To keep the formulae simple,
computations are modularized into subformu-
lae and as such distributed over and beyond the
spreadsheet. This makes the provenance (tree)
of spreadsheet values difficult to understand – a
probable cause for the high error rate in spread-
sheets.
To explore and navigate the subformulae in-
volved in the computation of a cell value we
present the subformula explorer “Fency”, a tree-
based, explorative interface: Whenever a user
clicks on a cell its formula becomes the root of
a cell-dependency graph. Each child node dis-
plays the formula of a cell (or range) reference
used in the parent formula. Moreover, each node
represents a direct link to the respective cell (or
range), so that it can be used for formula naviga-
tion as well.

1 Introduction
What is a mathematical formula? According to Wikipedia,
in mathematics it is “an entity constructed using the sym-
bols and formation rules of a given logical language”.
Even though there are multiple mathematical communities
of practice which use a partly different set of symbols and
slightly varying formation rules, there is a common under-
standing how to encode several information levels into for-
mulae by extending the linear form of text.

On the one hand, this construction of a formula,
O’HALLORAN calls a “grammatical strategy for encoding
meaning efficiently [. . . which is achieved . . .] through spa-
tial and positional notation in a form that is not found in
language.” [O’H05, p. 112]. In Fig. 1 we can see some
common typographical line elements. The spatial informa-
tion needed to characterize the form of a typical English

Figure 1: Typographical Line Elements1

text can be characterized via these line elements. But very
often formulae need more space.

Accommodating our running example in Fig. 3, the
equation

σ4 =
1

3

7∑
j=4

δ24j (1)

with variables σ4 and δ4j represents the simple formula
used in cell [B4].

Here, if we take a closer look (Fig. 2), we realize that
the equation transcends the ascender and descender height
with respect to the typographical baseline of the used font
quite a bit. If we look closely, we also realize right away
that not only specific spatial and positional notation is used,
the common font type is also broken, there are, for exam-
ple, greek letters. For mathematicians these are not un-
expected and hardly something to think about since they
have internalized the notational naming convention within
formulae, that is the relation between fonts and functional
status of objects. This common mathematical practice of
authoring and interpreting formulae evolved over centuries
and proved to be effective and efficient for mathematicians.

Figure 2: Equation (1) with Typography

On the other hand, in a spreadsheet there are also mathe-
matical formulae. We can, for instance, reformulate Equa-
tion(1) as a computational formula in a spreadsheet like
this:

[B4] = 1/3 ∗ SUMSQ(D4 : G4) (2)

Figure 3: The Spreadsheet “Summer in Bremen”

The differences between the different representations is
obviously vast. In this paper we use the example given
in Sect. 2 as a running example. In particular we discuss
the differences in Sect. 3 to motivate the design of our
(sub)formula explorer “Fency” described in Sect. 4. We
consider related work in Sect. 5 and conclude in Sect. 6
with an outlook on further work.

2 Running Example “Summer in Bremen”
Let us suppose that we want to describe the summer in Bre-
men statistically. Real-world distributions are typically not
fully known, e.g. the rain could stop for 5 minutes when
the observer went to the coffee bar to get some more cof-
fee. In this case, the variance of the whole distribution is
estimated by computing the variance of a sample of n ob-
servations drawn suitably randomly from the whole sample
space according to Equation (3) where x1, . . . , xk represent
the measurements and x̄ = 1

n

∑n
k=1 xk their arithmetic

mean.

σ =
1

n− 1

n∑
k=1

(xk − x̄)2 (3)

In the spreadsheet seen in Fig. 3, observed half-an-hour
periods of full sunshine resp. rain in Bremen, i.e., the
measurements, on four days in June are noted in ranges
[D3:G3] resp. [D5:G5]. The difference xk − x̄ is called the
mean deviation of xk. The mean deviation of those mea-
surements can be found in ranges [D4:G4] resp. [D6:G6].
The sample variance for sunshine in Bremen, for example,
in cell [B4] is calculated from the mean deviation accord-
ing to Equation (3) with the spreadsheet formula in Equa-
tion (2). Finally, the arithmetic mean of the sample vari-
ances is presented in cell [B7].

We use this example throughout the paper as running ex-
ample.

3 Readability of Spreadsheet Formulae
In general, the set of symbols used in spreadseet formu-
lae consists of given functions like SUM, individual macro
extensions, numbers, and cell references like [B4] (in A1
referencing style referring to the cell in column B and row
4) or [R4C2] (in R1C1 referencing style pointing to the
same cell). In MS Excel’10, for example, the set of sym-
bols enlists 339 functions and 220× 256 cell references per

worksheet. An essential component of spreadsheet players
is their computational foundation: they can compute values
from formulae, that is, they can simplify formulae to val-
ues. It is important to note that – even though it acts like
a programming language – “the formula language itself is
entirely textual” [Nar93, p. 49].

The formation rules are rather simple: concatenate the
ingredients into a string of ASCII characters. From the
user perspective NARDI points out that authoring and un-
derstanding formulae “the user must master only two con-
cepts: cells as variables and functions as relations between
variables” [Nar93, p. 42]. This is suspected to be the
underlying reason for spreadsheets being the world’s most
used programming environment: the task of writing formu-
lae (program scripts) is transformed into the task of writing
text in a well-understood domain language consisting of
typically 3-5 [SP88], at most 10 [Nar93, p. 43] and po-
tentially – in MS Excel e.g. – 339 functions. It is rather
interesting that the formula language hasn’t changed at all
since the very first appearance of spreadsheet applications,
therefore we can call it a successful formula language.

Figure 4: German R1C1 Notation of Equation (4)

Note that the ease of writing down spreadsheet formulae
comes at the cost of reading them. For a simple formula,
there is no problem in interpreting this linear notation of a
formula – if the reader is very familar with the used naming
convention for cells in spreadsheets.

The confusion begins if the spreadsheet author used the
rather uncommon R1C1 referencing style, e.g., for Equa-
tion (2):

[R4C2] = 1/3 ∗ SUMSQ(RC(2) : RC(5)) (4)

Here, the cell referencing is relative to the cell that will con-

tain the calculated value, e.g. RC(2) = R(0)C(2) refers
to [D4] (with D=B+2,4=4+0).

It gets even more confusing if the spreadsheet author
used e.g. the German MS Excel version with R1C1
referencing style (where “Z(eile)” stands for “R(ow)”,
“S(palte)” replaces “C(olumn)”, and ”SUMSQ” translates
to “QUADRATESUMME”) as in Fig. 4.

Besides this specific representation format knowledge,
the reader might also get easily overwhelmed if the for-
mula is complex. As readers are typically experts in their
specific fields, but laymen in spreadsheet technology, this
is in analogy to command line interfaces which work very
well for simple commands used by laymen or for complex
commands used by power users. Therefore, one explicit
aim of a spreadsheet author has to be the optimal reduction
of complex formulae.

This can be done via modularization, in particular by
collapsing parts of formulae into variables by using these
parts as autonomous formulae to calculate different cell
values.

Figure 5: Modularization: Mean and Variance in [B7]

In Fig. 5 we can see a version of Fig. 4, this time in the
more common A1 referencing style. The mean of all cell
values in range [B3:B6] is calculated in [B7].

Moreover, the cells in the ranges [D4:G4] and [D6:G6]
contain formulae of the kind (as shown in Fig. 6):

[D4] = SUM(D3;−H3) (5)
Thus, in [B7] as seen in Fig. 5 we have the recursively

resolved equations as shown in Fig. 9.
Note that even though the underlying formulae are one

of the most simple ones, already the concatenated formula
turns out to look rather complex to grasp. The reason con-
sists of the fact that the cell references in Equation (10) can
still be resolved easily by a reader, but the cell references
in Equation (11) are more distributed and thus much harder
to follow. HERMANS ET AL. report that nested formulae
are hard to understand for end-users, which was also specu-
lated in [Bre08]. “We conclude that users find it difficult to
work with long calculation chains” [HPD12, p. 10]. Some-
what surprisingly they continue that this difficulty “does
not influence their perceived understanding of the formula
or their ability to explain it” [HPD12, p. 10]. A closer read
reveals that their users are spreadsheet professionals, thus
spreadsheet authors that not only do have the background
knowledge for the specific spreatsheet at hand, they also
know of the data architecture they created. They do not
need to understand the concrete formula any longer as they
trust in the underlying (hopefully) sound architecture.

As it is well-known that human short-term memory is
rather limited (7 +/- 2 items can be kept in short term mem-
ory at any given time), the modularization of formulae is

not an option, but rather a requirement for authoring read-
able spreadsheets. It is obvious that this modularization
enables at the same time a high error rate with errors that
are hard to debug.

The formula explorer Fency is based on the idea that the
cell references can be automatically resolved into a cell-
independent format e.g. presentation MathML [Aus+10]
with variables that have mnemonic names, that is, names
that hint at their meaning. For example, it is a quasi-
standard to index a set of data points by a counter variable
in {i, j, k, l,m, n}, to assign the name ȳ to the mean of data
points yk, to name variances σ, and to name differences δ.
Now look at Equations (10) to (12) in common mathemat-
ical notation:

0, 333333 = σ̄ (6)

=
1

2

6∑
i=3

σi (7)

=
1

2

6∑
i=3

1

3

7∑
j=4

δ2ij

 (8)

=
1

6

6∑
i=3

7∑
j=4

(xij − x̄i)2 (9)

Note that typically a reader familiar with math notation will
have noticed at the latest in Equation (7), that there is some-
thing strange going on with the mean being a sum of 4
numbers divided by the normalizing term 2. Looking at
Fig. 5 we notice why the effect is correct, but the formula
isn’t. Therefore, math notation might also help to discover
semantic errors in formulae.

Figure 6: Modularization: Deviation in [D4]

The modularization can be kept, if we visualize the for-
mula dependencies in form of a graph, where every node
contains information about a formula.

4 The (Sub)Formula Explorer Fency
To keep spreadsheet formulae simple, computations are
modularized into subformulae and as such distributed over
and beyond the spreadsheet. Even though the modular-
ization simplifies the formula itself, it resolves in a very
complex provenance (tree) of spreadsheet values. The ba-
sic idea of Fency consists in an interactive visualization
of the modularization of a formula. To explore and navi-
gate the subformulae involved in the computation of a cell
value we developed a semantically supported, tree-based,
explorative interface: Whenever a user clicks on a cell
its formula becomes the root of a “formula graph”, i.e.,
a graph with cell/range nodes and cell/range-dependency
edges. Each child node displays the formula of a cell (or
range) reference used in the parent formula.

For example, in Fig. 7 we can see an entire formula
graph developed after the user clicked cell [B7]. This

0, 333333 = 1/2 ∗ SUM(B3 : B6) (10)
= 1/2 ∗ SUM(1/3 ∗ SUMSQ(D4, G4) : 1/3 ∗ SUMSQ(D6, G6)) (11)
= 1/2 ∗ SUM(1/3 ∗ SUMSQ(SUM(D3;−H3),SUM(G3;−H3))

: 1/3 ∗ SUMSQ(SUM(D5;−H5),SUM(G5;−H5))) (12)

Figure 9: Recursively Solving Equations for cell [B7]

Figure 7: The Expanded Formula Tree in Cell [B7] (with
Spreadsheet Formulae) Figure 8: The Expanded Formula Tree in Cell [B7] (with

Math Formulae)

cell contains the formula 1/2 ∗ SUM(B3 : B6), that
is Equation (10). The values in the cells in the cell
range [B3:B6] are computed by equivalents of the formula
1/3 ∗ SUMSQ(D4, G4) taken from cell [B4]2. With Fency,
if the user clicked cell [B7], the root node as in Fig. 10
would be created and the cell-dependency of the underlying
formula on range [B3:B6] would give rise to a child node
representing it in the formula graph. If the user wanted
to see the child node of this, then she could click the ex-
pand button on the upper right and a node for the functional
block in range [D4:G4] would appear.

On a more technical note, the formula explorer Fency is
a semantic service integrated into the open source Semantic
Alliance Framework [Dav+12]. This framework allows to
superimpose semantic services over an existing (and possi-
bly proprietary) application provided that it gives open-API
access to user events. Elements in the application are con-
nected to according concepts in structured background on-
tologies, which, for instance, contain a representation of the
respective domain and some instance specific information.
Semantic services can draw on the ontology information to
offer intelligent services, which are offered to the user via
the Semantic Alliance framework in local, but application
independent windows. For the most common spreadsheet
applications MS Excel and LibreOffice there are al-
ready existing Semantic Alliance APIs.

Fency offers more than a tree-based visualization of the
(sub-)formulae in a spreadsheet. In a nutshell, every node
of the formula graph consists of a list of elements:
• The title expressing the underlying meaning of a cell

value or a range of values,
• a link to the corresponding cell/range in the spread-

sheet,
• the dependencies this cell/range depends on,
• its data value,
• an explanation of its meaning,
• the spreadsheet formula (or its equivalent math for-

mula), and
• iterators to move through the cells with their resp.

values of a range.

Figure 10: Node Variants in Cell [B7]

Let us have a closer look, for example, at a node like
the left one in Fig. 10. The cell [B7] is associated with the
ontology concept “mean variance”. The title of this con-
cept followed by the cell reference “B7” itself is used as a
title for the node. The underline of the cell reference in-
dicates that it represents a link to this cell. On the upper

2Ranges used as cell references in formulae are typically func-
tional blocks, i.e., cell ranges that have the same functional con-
tent, see [KK13] for more details.

right-hand side we can see a collapse and an expand but-
ton, which collapses or expands the formula graph respec-
tively if clicked. The cell value of cell [B7] is 0, 333333
and is shown in the node as well. In the grey box the be-
ginning of the explanation of the concept “mean variance”
given in the ontology is visible. Hovering over the grey
box will trigger the expansion of it, so that the entire defi-
nition will be visible (see an example in Fig. 11). By using
the JOBAD framework[JOBAD], the user can even interact
with the information items within this explanation: If other
concepts are referenced in this definition (indicated by blue
font usage), a click will open another window with the ac-
cording concept definition. This way, a user can explore
the background ontology and comprehend the meaning of
the formula much deeper. The lower part of the node con-
tains the formula, here the formula for [B7], if existent; see
an empty formula example in Fig. 11. The hovering effect
kicks in here as well, in particular, if the formula exceeds
a certain size, the entire formula will only be visible while
hovering over the formula box.

Figure 11: Expansion on Hover over Definition Box

Cell [B7] itself is not part of a functional block, but e.g.
cell [D5] is. As the value in [B7] depends down in the for-
mula tree on the value in this cell, we can find the node
for [D5] as the last one in the formula graph in Fig. 7 or
more conveniently in Fig. 11. This functional block covers
the observed and summarized data. Each measurement de-
pends on which day it was taken and what wheather condi-
tion is reported, in other words the measurement functional
block depends on the day functional block [D3:G3] and the
wheather functional block [[A3], [A5]]. This dependency
is noted in the node directly under the title (in grey font).
Moreover, we can see that cell [D5] contains the value for
“Day 1” and “Rain”. The triangular buttons allow a user to
skim through the values in the respective functional blocks,
and navigate to the respective spreadsheet cells via the link
“D5” right after the title. This feature allows the user to
easily navigate through related information items while ab-
stracting away from the concrete structure. If any of the
information items presented above are missing, the UI of
the node adapts.

In a future prototype, if the user double clicks on the
formula in a node, then the spreadsheet formula is con-
verted into a math formula using MathML (see right node
in Fig. 10). The option of presenting both variants seems
sensible as a switch of formats should always be easily re-
versible to avoid confusion. The ontology concept “mean
variance” includes knowledge about the symbol notation δ̄.
Moreover, as the range [B3:B6] is associated with the con-
cept “sample variance” with its symbol notation δ, a parser
should be able to figure the math formula as seen in the

right node in Fig. 10. To give a taste of the potential of this
conversion, we include Fig. 8. Another idea, we want to
pursue shortly is that the user can even edit the formula and
push the changes back to the spreadsheet.

5 Related Work
The visualization of data-flows within spreadsheets is not
a new idea. In MS Excel itself there is a tracing tool
that visualises precedents and dependents of a selected cell.
The visualization breaks if the dependencies are beyond the
worksheet or even more so beyond the workbook.

In [CKR01] the authors studied the comprehension fac-
tor of formulae visualized in distinct ways. They frame
formula understanding in terms of the reader’s cognitive
load and thus as a visual memory problem. They find
that the “ideal organization is the simple tree. It is the
easiest to chunk. In the simple tree the surface organiza-
tion of the formula tree is in harmony with its deep struc-
ture.” [CKR01, p. 487].

KANKUZI and AYALEW presented in [KA08] a graph-
based visualization of spreadsheets. Based on a Markov
Clustering algorithm they generate a data-flow graph which
visualizes cell cluster dependencies in an extra window
aside the spreadsheet application window and provides se-
mantic navigation similar to the one presented in Fency.
Instead of using functional blocks, i.e., sets of cells that
belong together semantically, these authors use statistical
clustering. Even though this probably provides a similar
grouping effect, the spreadsheet reader won’t know why
the cells are grouped. With Fency we cannot only offer
the reader this reason, i.e., the semantic relating concept,
we also allow the reader to dig into the definition of this
concept.

In [Raj+00] a tree representation for formulae is sug-
gested according to predominant Software Engineering
techniques. In particular, a formula is divided into a struc-
ture tree containing operators and functions and an argu-
ments tree containing cell addresses and constants. This
tree visualization of a formula is suggested to be done when
authoring a spreadsheet, whereas Fency is a tool that sup-
ports reading a spreadsheet. In [JMS06] a tool for gen-
erating formulae in several formats (possibly spreadsheet
format) is presented. Again, the sole focus is given to the
developper or author of formulae, nothing is said about the
enhanced readibility or comprehendibility of a formula.
http://www.spreadsheetstudio.com/ offers

another type of formula explorer. The modularity of MS
Excel formulae is made use of as is in Fency. This for-
mula explorer offers a modal pop-up window that presents
the formula of the selected cell. The formula is auto-
matically segmented into sensible parts like cells, ranges,
function plus function parameters, constants etc. If the
user hovers over the formula shown then the corresponding
value is presented. If a segment corresponding to a cell or
range is left-clicked, then the formula of that MS Excel
object is shown as before. Thus, this formula explorer al-
lows a similar navigation thru a formula via its subformu-
lae. Moreover, the MS Excel cursor also moves to the MS
Excel object selected in the formula window.

ASUNCION suggests in [Asu11] to capture the prove-
nance of cell values by unobtrusively document their his-
tory and to make this set of data available for later query-
ing. This kind of provenance capture certainly is appealing
because of its automation facility, but the provenance is not
stored on a semantic level. Thus, the author has to recog-

nize data to be able to interpret the provenance correctly.
Otherwise this kind of data handling seems to be very te-
dious.

6 Conclusion and Further Work
In this paper we have presented Fency, a (sub)formula ex-
plorer for spreadsheets, that allows readers to deeper un-
derstand what formulae, which concrete calculated values,
what underlying concepts are spread how and where over
the document.

We hope that Fency will prove to be a useful service, es-
pecially as we are planning to extend its capability towards
a light formula resp. concept editor, that allows to update
existing formulae resp. ontology items. Even though the
cell values are shown in the resp. formula nodes, we be-
lieve that the provenance of cell values is still not enough
covered. The graph structure gives a hint where the data
originally come from, but very often outside data bases
are used for data input of spreadsheets. In particular, the
spreadsheet author is typically a data architect. For him the
primitives are data resources. Therefore, a set of new in-
formation objects could be introduced to spreadsheets. If
they were present, then Fency could visualize it as well, to
obtain a formula visualization that not only keeps all rele-
vant information in one place, it also uses the notation that
is most efficient.

Acknowledgements We want to thank the anonymous
reviewers for their constructive suggestions. This work has
been funded by the German Research Council under grant
KO-2484-12-1.

References
[Asu11] Hazeline U. Asuncion. “In Situ Data Prove-

nance Capture in Spreadsheets”. In: eScience.
IEEE Computer Society, 2011, pp. 240–247.
ISBN: 978-1-4577-2163-2.

[Aus+10] Ron Ausbrooks et al. Mathematical Markup
Language (MathML) Version 3.0. W3C Rec-
ommendation. World Wide Web Consortium
(W3C), 2010. URL: http : / / www . w3 .
org/TR/MathML3.

[Bre08] Andrej Bregar. “Complexity Metrics
for Spreadsheet Models”. In: CoRR
abs/0802.3895 (2008).

[CKR01] David Chadwick, Brian Knight, and Ka-
malasen Rajalingham. “Quality Control in
Spreadsheets: A Visual Approach using Color
Codings to Reduce Errors in Formulae”. In:
Software Quality Journal 9.2 (2001), pp. 133–
143.

[Dav+12] Catalin David et al. “Semantic
Alliance: A Framework for Semantic
Allies”. In: Intelligent Computer Mathematics.
Conferences on Intelligent Computer Mathe-
matics (CICM) (Bremen, Germany, July 9–14,
2012). Ed. by Johan Jeuring et al. LNAI 7362.
Berlin and Heidelberg: Springer Verlag, 2012,
pp. 49–64. ISBN: 978-3-642-31373-8. URL:
http : / / kwarc . info / kohlhase /
papers/mkm12-SAlly.pdf.

[HPD12] Felienne Hermans, Martin Pinzger, and
Arie van Deursen. “Measuring Spread-
sheet Formula Understandability”. In: CoRR
abs/1209.3517 (2012).

[JMS06] Sven Jörges, Tiziana Margaria, and Bernhard
Steffen. “FormulaBuilder: a tool for graph-
based modelling and generation of formulae”.
In: Proceedings of the 28th international con-
ference on Software engineering. ICSE ’06.
Shanghai, China: ACM, 2006, pp. 815–818.
ISBN: 1-59593-375-1.

[JOBAD] JOBAD Framework – JavaScript API for
OMDoc-based active documents. URL: http:
/ / jobad . omdoc . org (visited on
02/18/2012).

[KA08] Bennett Kankuzi and Yirsaw Ayalew. “An end-
user oriented graph-based visualization for
spreadsheets”. In: Proceedings of the 4th in-
ternational workshop on End-user software
engineering. WEUSE ’08. Leipzig, Germany:
ACM, 2008, pp. 86–90. ISBN: 978-1-60558-
034-0.

[KK13] Andrea Kohlhase and Michael Kohlhase.
“Spreadsheets with a Semantic Layer”. In:
Electronic Communications of the EASST:
Specification, Transformation, Navigation –
Special Issue dedicated to Bernd Krieg-
Brückner on the Occasion of his 60th Birth-
day (2013). Ed. by Till Mossakowski, Markus
Roggenbach, and Lutz Schröder. in press.
URL: Http://kwarc.info/kohlhase/
papers/easst11.pdf.

[Nar93] Bonnie A. Nardi. A Small Matter of Program-
ming: Perspectives on End User Computing.
1st. Cambridge, MA, USA: MIT Press, 1993.
ISBN: 0262140535.

[O’H05] K.L. O’Halloran. Mathematical discourse:
language, symbolism and visual images. Con-
tinuum, 2005. ISBN: 9780826468574. URL:
http://books.google.com/books?
id=5LsAJaBRKRcC.

[Raj+00] K. Rajalingham et al. “Quality control in
spreadsheets: a software engineering-based ap-
proach to spreadsheet development”. In: Sys-
tem Sciences, 2000. Proceedings of the 33rd
Annual Hawaii International Conference on.
2000, 10 pp. vol.1.

[SP88] Jorma Sajaniemi and Jari Pekkanen. “An em-
pirical analysis of spreadsheet calculation”. In:
Softw. Pract. Exper. 18.6 (June 1988), pp. 583–
596. ISSN: 0038-0644.

