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Abstract
The assessment of a person’s traits such as ability
is a fundamental problem in human sciences. We
focus on assessments of traits that can be mea-
sured by determining the shortest time limit al-
lowing a testee to solve simple repetitive tasks,
so-called speed tests. Existing approaches for ad-
justing the time limit are either intrinsically non-
adaptive or lack theoretical foundation. By con-
trast, we propose a mathematically sound frame-
work in which latent competency skills are rep-
resented by belief distributions on compact inter-
vals. The algorithm iteratively computes a new
difficulty setting, such that the amount of be-
lief that can be updated after feedback has been
received is maximized. We provide theoretical
analyses and show empirically that our method
performs equally well or better than state of the
art baselines in a near-realistic scenario.

1 Introduction
The assessment of a person’s traits such as ability is a fun-
damental problem in the human sciences. Perhaps the most
prominent example is the Programme for International
Student Assessment (PISA) launched by the Organisation
for Economic Cooperation and Development (OECD) in
1997. Traditionally, assessments have been conducted with
printed forms that had to be filled in by the testees (paper
and pencil tests). Nowadays, computers and handhelds be-
come more and more popular as platforms for conducting
studies in social sciences; electronic devices not only fa-
cilitate data acquisition and processing, but also allow for
real-time adaptivity and personalization.

Psychological testing differentiates between two types of
tests, namely power and speeded tests [Furr and Bacharach,
2007]. The former uses items with a wide range of diffi-
culty levels, so that testees will almost surely be unable to
solve all items, even when they are given unlimited time.
On the contrary, speeded tests deploy homogeneous items
that are easy to solve. The difficulty in speeded tests is real-
ized by narrow time intervals in which the response has to
be given. In adaptive speed tests, the latent competency
parameter θ̂ encodes for instance reaction time, concen-
tration, or awareness of the testee. An example of such a
test is the Frankfurt Adaptive Concentration Test II (FACT-
II) [Goldhammer and Moosbrugger, 2007] where a simple
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multiplicative update of the estimate θ̂ is applied for the
adaptation process.

In this paper, we present a novel framework for learning
competency parameters in speeded tests. The formal prob-
lem setting resembles a game played in rounds. In each
round, the goal is to gain as much information as possible
on the difficulty setting θ corresponding to the testee’s com-
petency. The uncertainty of an estimate θ̂ is represented by
a belief distribution over a compact interval. At round t,
a new estimate θ̂t is drawn, such that θ̂t divides the belief
mass in two equally sized halves. The testee solves the item
which realizes a difficulty level of θ̂t. The agent observes
the response ρt. We differentiate three cases: (i) if θ̂t < θt,
the difficulty induced by θ̂t was too easy for the testee and
ρt = 1, (ii) in case θ̂t > θt, the setting as too difficult and
ρt = −1, and (iii) θt = θ̂t which corresponds to a just right
setting and response ρt = 0. A similar scenario for discrete
variables has been studied by Missura and Gärtner [2011]
in the context of computer games.

Before we continue with the presentation of our method,
note that the problem setting does not match traditional ap-
proaches, including standard supervised (e.g., binary clas-
sification) and unsupervised (e.g., density estimation) set-
tings, as the feedback needs to be viewed a directional and
not a point-wise one and we cannot make assumption on
the testee or stationarity of the observations due to learn-
ing effects and tiredness. Thus, the directional feedback is
used to update exactly half of the belief mass for maximal
information gain. The rationale behind this update strategy
is the following: once we observe that θ̂ is too difficult, it is
highly probable that all difficulty levels θ̃ > θ̂ are also too
difficult. A similar argument holds vice versa for too easy.
The directional feedback is therefore used as a nominal re-
ward that triggers the update process. We present results on
the step size of the proposed algorithm and show that it per-
forms equally well or better than state of the art baselines
in a near-realistic scenario modelling testee behaviour.

The remainder is organized as follows. Section 2 reviews
related work. We present our main contributions, the learn-
ing agent and a theoretical analysis in Sections 3 and 4,
respectively. Section 5 reports on simulation studies and
Section 6 concludes.

2 Related Work
Motivated by applications in computer games as well as
teaching systems, Missura and Gärtner [2011] considered
the problem of dynamic difficulty adjustment. They for-
malized the problem setting as a game between a master
and a player played in rounds t = 1, 2, · · · , where the mas-



ter predicts the difficulty setting for the next round. After
the player has finished his turn, the master receives feed-
back and updates the belief on the difficulty settings and
predicts the setting for the next round. The authors intro-
duce the Partial Ordered Set Master (POSM) algorithm that
represents the set of admissible difficulty settings as a finite
discrete set K endowed with a partial ordering ≺. We will
show later that the POSM algorithm for the case of a totally
ordered set of difficulty settings is contained as a special
case within our framework.

Csáji and Weyer [2011] investigate the problem of esti-
mation in the presence of noise using a binary sensor with
adjustable threshold. Their approach estimates a constant
θ∗ ∈ R that is disturbed by additive, i.i.d. noise. The
threshold θt is assumed to be adjustable based on all previ-
ous observations and threshold values. Under mild assump-
tions on the distribution of the noise, they derive a strongly
consistent estimator for θ∗ based on stochastic approxima-
tion. In contrast to them , we do not make any assumptions
on the distribution of the value to be estimated or on its
stationarity.

In the field of psychometrics, only a few adaptive speed
tests have been designed. For the assessment of con-
centration ability, Goldhammer and Moosbrugger [2007]
suggested the Frankfurt Adaptive Concentration Test II
(FACT-II). As FACT-II conceptualizes concentration as the
ability to respond to stimuli in the presence of distractors,
testees are shown a set of items comprising of target and
non-target items. They are instructed to hit one button, if a
target item is present, and another button, if no target item
is among the items shown. After each round t, exposure
time is adjusted until a liminal exposure time is reached
that just allows the testee to solve the task. Starting with a
fixed initial exposure time θ1, updating is performed mul-
tiplicatively depending on whether a response is given in
time or not.

3 A Learning Agent for Parameter
Estimation in Speeded Tests

We cast the problem of learning competency parameters in
speeded tests as a game between an agent A and a testee
T played in rounds t = 1, 2, . . . on a continuous inter-
val of difficulty settings Θ = [a, b]. Θ is governed by a
total order relation > induced by the real numbers corre-
sponding to the more-difficult-than relation. We assume
that at each round, there is a just right setting θt ∈ Θ for
the testee T . At round t, (i) the agent chooses a setting
θ̂t ∈ Θ based on the current belief, (ii) the testee responds,
and (iii) the agent observes directional feedback of the form
ρt ∈ {−1, 0,+1} subject to the following rule:

ρt =


+1 if θ̂t < θt, too easy
0 if θ̂t = θt, just right
−1 if θ̂t > θt, too difficult

Note that the just right setting remains hidden to the agent
at all times.

In the course of the game, the agent is choosing actions
θ̂t from the space of possible actions Θ that lead to a reward
signal ρt depending on the state of the environment θt. The
goal of the agent is to reach the rewarding state of having
selected the just right setting by avoiding the punishing sig-
nals associated with too difficult or too easy settings.

The general idea of our approach is the following: We
use a function wt : [a, b] → (0,∞) to model the agent’s

belief at time t about the optimal action based on the expe-
rience gathered at time-steps 1, . . . , t− 1. Suppose that the
agent selects a setting θ̂t and receives feedback ρt = +1
(too easy). Because of the transitivity of the ordering of
difficulty settings, the agent not only learns about θ̂t as
an isolated point, but also learns that all settings θ̃ which
are easier than θ̂t, i.e., θ̃ < θ̂t, would also have been too
easy and the agent updates the belief on the whole interval
[a, θ̂t]. The mass of belief that can be updated is then given
by

At(θ̂t) :=

∫ θ̂t

a

wt(x)dx.

Similarly, if ρt = −1, the belief in the interval [θ̂t, b] can
be updated according to

Bt(θ̂t) :=

∫ b

θ̂t

wt(x)dx.

If ρt = 0, there is no reason to update belief, because cur-
rent knowledge has led to a correct prediction. We devise
the following strategy for predicting θ̂t and updating belief:
The difficulty setting θ̂t for the upcoming round is selected
in order to allow to update as much belief as possible after
feedback has been obtained. That is, we select θ̂t so that

θ̂t = argmaxθ̃∈[a,b] min
{
At(θ̃), Bt(θ̃)

}
. (1)

It can easily be seen that this amounts to selecting θ̂t such
that

At(θ̂t) =
1

2

∫ b

a

wt(x)dx.

Equivalently, θ̂t can be characterized by At(θ̂t) = Bt(θ̂t).
Because wt is non-negative by assumption, the mapping
θ̂t 7→ At(θ̂t) strictly increasing and thus bijective, so θ̂t is
uniquely determined if only

∫ b
a
wt(x)dx 6= 0. In order to

derive an algorithm from this framework, we need to spec-
ify the space of belief functionsW and the belief updating
rule

W × {−1, 0, 1} → W, (wt, ρt) 7→ wt+1.

The next section introduces strategies to learn the agent.

3.1 Interval Subdivision Agent
While there is no restriction on the space of belief functions
arising from the general framework, we choose to use the
space of non-negative step functions on [a, b] for W and
an exponential updating rule based on interval subdivision.
That is, we divide the interval containing the actual predic-
tion θ̂t at θ̂t and update the belief values to the left or right
of θ̂t depending on the feedback ρt by multiplying with a
parameter β ∈ (0, 1). Formally, denoting by χM the char-
acteristic or indicator function of a set M ⊂ R, we write
wt as a sum

wt =

Nt∑
i=1

y
(t)
i χ

I
(t)
i

for some Nt ∈ N, where y(t)i ≥ 0 is the value wt takes on
the ith interval given by

I
(t)
i = [x

(t)
i−1, x

(t)
i )



for i = 1 · · · , Nt−1 and I(t)Nt
= [xNt−1, xNt ]. The interval

endpoints are defined by a partition

a = x
(t)
0 < x

(t)
1 < x

(t)
2 < · · · < x

(t)
Nt

= b

of [a, b]. Denoting the index of the interval containing θ̂t
by i∗t , we update

wt+1 =

i∗t−1∑
i=1

βyiχI(t)i
+ βyi∗tχ[xi∗t −1,θ̂t)

+ yi∗tχ[θ̂t,xi∗t
) +

Nt∑
i=i∗t+1

yiχI(t)i
,

in case ρt = 1 and analogously for ρ = −1,

wt+1 =

i∗t−1∑
i=1

yiχIi + yi∗tχ[xi∗t −1,θ̂t)

+ βyi∗tχ[θ̂t,xi∗t
) +

Nt∑
i=i∗t+1

βyiχIi .

Finally, if ρt = 0 no update is necessary and wt+1 = wt.
The belief function can be stored and updated efficiently by
storing the endpoints x(t)1 , · · · , x(t)Nt−1 and function values

y
(t)
1 , · · · , y(t)N . Also, our particular choice ofW makes the

computation of θ̂ simple and inexpensive: As w is a step
function, its integral over θ is given by∫ b

a

wt(x)dx =

Nt−1∑
i=1

yi (xi+1 − xi)

The initial belief function w1 can be tailored to incorporate
prior knowledge about where to expect θ1. In the absence
of prior knowledge on the distribution of θ, w1 ≡ 1 serves
as a possible initialization.

3.2 Limited-memory Interval Subdivision Agent
The memory usage of the internal subdivision agent (ISA)
at time t is in O(t). Indeed, if w0 is represented by N
interval-value pairs, each step adds at most one node in the
belief function. A limit on the amount of memory con-
sumed by ISA can be imposed by limiting interval subdi-
vision. Thus, the limited-memory ISA (LISA) only sub-
divides intervals when subdivision results in intervals of
width greater than a given parameter ε > 0.

4 Theoretical Analysis
In this section we present a theoretical analysis of the ISA
algorithm. We are interested in characterizing convergence
properties of ISA under different assumptions. The sim-
plest assumption that can be made about the just right
setting is that it remains constant at all times. That is,
θt ≡ c for c ∈ [a, b] and all t ∈ N. We now present a
bound on the step size between successive predictions by
ISA. The bound follows directly from Lemma 1.1

Lemma 1. Let f : [a, b] → (0,∞) be bounded and in-
tegrable on [a, b]. Let β ∈ (0, 1). Let θ1, θ2 ∈ [a, b]

be numbers such that
∫ θ1
a
f(x)dx = 1

2

∫ b
a
f(x)dx and∫ θ2

a
f̂(x)dx = 1

2

∫ b
a
f̂(x)dx, where

f̂(x) =

{
βf(x) if a ≤ x ≤ θ1
f(x) if θ1 < x ≤ b .

1Detailed proofs are presented in [Bengs and Brefeld, 2013].

Then θ1 < θ2 and

1− β
4M

∫ b

a

f(x)dx ≤ θ2 − θ1 ≤
1− β
4m

∫ b

a

f(x)dx. (2)

where M := maxx∈[a,b] f(x) and m := minx∈[a,b] f(x).

Lemma 1 says that if the difficulty level θ̂t estimated by
ISA is too easy (ρt = 1), the new estimate will be greater
than its predecessor, that is θ̂t+1 > θ̂t holds. Analogously
the case ρt = −1 implies θ̂t+1 < θ̂t. We use the inequality
to derive a bound on the step size of ISA in the following
Theorem 1.

Theorem 1. Let
(
θ̂t

)N
t=1

be a sequence of estimations gen-

erated by ISA with parameter β. Then for t = 1, . . . , N−1
it holds that

1− β
4Mt

∫ b

a

wt(x)dx ≤
∣∣∣θ̂t+1 − θ̂t

∣∣∣ ≤ 1− β
4mt

∫ b

a

wt(x)dx,

where
Mt := max

x∈[a,b]
wt(x)

and
mt := min

x∈[a,b]
wt(x).

Theorem 1 bounds the minimal and maximal difference
between successive estimates by ISA. Note that the bounds
are invariant under rescaling of the belief function, but de-
pend on the parameter β that controls learning rate: If β is
small, new experience is given more weight and the lower
bound on step size is greater than its analogue for β ≈ 1
which gives less weight to new information.

We now investigate the relation between LISA and
POSM for a completely ordered set which we denote by
Θ′ = {1, · · · , N} for some N ∈ N, endowed with the
natural ordering. The following proposition holds:
Proposition 1. Let N ∈ N, Θ′ = 1, . . . , N endowed with
the natural ordering be the set of difficulty levels for POSM
and let [a, b] = [0, N ]. Let β ∈ (0, 1), ε < 1. De-
fine the initial belief function w0 for LISA by xi = i for
i = 0, · · · , N and yi = 1 for j = 1, · · · , N . Denote
by ind(x) the function mapping x ∈ [a, b] to Θ′ such that
x ∈ [xind(x)−1, xind(x)). Then, given a sequence of feed-
back (ρt)t∈N, the estimates (k̃t) produced by POSM coin-
cide with (ind(θ̂t))

N
t=1.

The result stated in Proposition 1 explains to some extent
why ISA and LISA expose a behaviour qualitatively simi-
lar to that of POSM in the setting of our experiments. As
we show in the next section, the LISA and ISA algorithms
are able to exploit the continuous setting, outperforming
POSM by a significant margin.

5 Empirical Results
For our experiments, we simulate near-realistic scenarios to
create settings that reflect behaviour observed in adaptive
psychological speed tests or computer games. We compare
the empirical performance of ISA and LISA to state-of-the-
art baselines POSM and the algorithm used by FACT-II .

Throughout all our experiments, we use Θ = [0, 1]. Note
that this does not limit generality, as every compact interval
can be rescaled and shifted to match Θ. To allow for a fair
comparison, the set of difficulty settings for POSM con-
sists of N equidistantly sampled points in Θ, where N is
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Figure 1: Randomly parametrized functions modelling θ in
absence (left) and presence of drift (right). In both scenar-
ios white noise is added.
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Figure 2: Squared deviations from true θ for the constant
(top) and the drift (bottom) setting.

the number of time steps used. This choice guarantees that
the number of subdivisions made by ISA and LISA is less
than or equal to the number of settings available to POSM.
Thus, all approaches have access to the same amount of
resources. We use optimal parameters for ISA, LISA and
POSM chosen by model selection.

We consider two distinct settings: In the first setting,
the true parameter θ remains constant and is sampled from
a uniform distribution. For the constant setting, we also
include Csáji-Weyer-Iteration (CWI) [Csáji and Weyer,
2011] as an additional baseline. In the second setting, we
simulate learning and tiredness effects. The true parameter
θ thus underlies drifts and the resulting distribution is not
stationary. Additionally, observations are disturbed by ad-
ditive noise originating from a Gaussian distribution. Fig-
ure 1 shows sample observations for the two settings. In
both settings, we conduct 500 repetitions with randomly
drawn sequences θt and report on averaged deviations and
standard errors.

Figure 2 (top) shows the results for the constant set-
ting. All algorithms need some time to adapt to the noisy
θt. The three learning algorithms and CWI, however, ap-
proach the true θ significantly faster than FACT. CWI and

Table 1: Sum of squared deviations from true θ, average
over 500 runs.

ISA LISA POSM FACT CWI
const. 3.3842 4.3905 4.2441 34.8336 5.9575
drift 3.4027 4.0825 4.4171 9.4808 –

ISA approximate the true θ more closely with ISA realiz-
ing quicker convergence and smaller error. The squared
error is smallest for ISA, followed by the almost equally
performing LISA and POSM. FACT is outperformed by all
four competitors by a large margin (see also Table 1).

Figure 2 (bottom) summarizes the results for the drift
setting. ISA performs best, followed by LISA and POSM.
Again FACT is outperformed significantly by the others.
The squared errors are similar or smaller for all algorithms
than they are in absence of drift (see Table 1), showing that
all algorithms can deal with drift well. The performance
of FACT even proves significantly better than in the set-
ting without drift. This effect can be explained by the fact
that the model of drift employed here favors evolutions of
θ starting in the upper range of Θ. Note that FACT always
initializes θ0 with the highest possible value which highly
affects its performance in the first iterations. The other
algorithms thus benefit in the beginning from intitalizing
θ with the mean of the search space. However, different
choices are possible.

6 Conclusion
We have introduced a mathematically sound learning
framework for parameter adaptation in speeded tests. Our
approach does not make any assumptions on the distribu-
tion of the true parameter and is therefore deployable in set-
tings characterized by parameter drift and additive noise.
Empirically, we have shown that the algorithm performs
equally or better than state of the art baselines in differ-
ent scenarios modelling testee behaviour under different as-
sumptions.
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